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Abstract

We present a model for the unsupervised dis-
covery of morphological paradigms. The
goal of this model is to induce morphological
paradigms from the bible (raw text) and a list
of lemmas. We have created a model that splits
each lemma in a stem and a suffix, and then
we try to create a plausible suffix list by con-
sidering lemma pairs. Our model was not able
to outperform the official baseline, and there is
still room for improvement, but we believe that
the ideas presented here are worth considering.

1 Introduction

In this paper we describe our attempt to cap-
ture morphological paradigms totally from scratch
(Kann et al.,, 2020) prepared for the task
of morphological paradigm completion in the
CoNLL-SIGMORPHON 2020 Shared Task. Com-
putational morphology is not a new area and there
is plenty of related work. Some years ago, this
problem was commonly tackled using finite-state
and two-level approaches, such as in Kaplan and
Kay (1994), Beesley and Karttunen (2003), and
Koskenniemi (1983). Recent works, on the other
hand, rely mostly on statistical approaches, such
as in Faruqui et al. (2016) and Kann and Schiitze
(2017).

There have been several Shared Tasks recently
on morphological inflection (Cotterell et al., 2016,
2017, 2018; McCarthy et al., 2019). The task for
this year is more complex, as we are asked to dis-
cover paradigms from scratch. This is an intriguing
research area that could give us the chance of recov-
ering dead languages that have only limited written
resources. Several researchers have attempted to
solve this task, such as Goldsmith et al. (2017), Jin
et al. (2020), and Erdmann et al. (2020).

We present a pipeline that assumes that all mor-
phological realizations in a paradigm (for each lan-
guage) follow a fixed structure: stem+suffix.
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Based on that logic, we look for the best candidates
to compose the suffix inventory, we cluster them
using K-means and after that, we join stems and
suffixes. We employ language models to get the
most natural outputs. The pipeline that we have
developed does not contain any neural network
component, but we contemplate it as a possibility
to extend our work in the near future.

This paper is structured as follows: In the next
section we introduce the task that we have worked
on. We describe our approach in the third section.
Afterwards, we show our results compared to the
baseline model. To conclude, we discuss our results
and provide possible future directions.

2 Task

In this competition there was one task that we had
to perform. A computational system had to be
built, which, given a raw text and a set of lemmas,
it would return the complete list of paradigms for
each verb. The computational model should be able
to read a text like this,

The aircraft landed at the JFK airport. Other
pilots decided to land in Philadelphia. As you may
imagine, landing a plane is not an easy job, but
imagination can help.

and extract morphological paradigms. In the shared
task, a list of lemmas is also given as a starting
point. This list of lemmas could include verbs like
land and imagine.

In the case of the verb land, in the example
above, it is pretty easy to get its inflections (land,
landed, landing). This could, for example, be done
with a Minimum Edit Distance based method and it
is relatively easy, as there is no usage of land with
the function of a noun. It gets slightly more compli-
cated with the verb imagine, as a simple distance-
based algorithm could fail, because it could find
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imagination as a possible conjugation of the verb
imagine.

2.1 Dataset

As one of the most widely extended resources is
the bible, the organizers decided to consider it as
the raw text input data. Together with the bible, a
list of verbal lemmas was given. The languages for
development were Maltese, Persian, Portuguese,
Russian and Swedish. The languages for testing in-
cluded the following: Basque, Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish and
Turkish.

3 Method

Our method has a very strong assumption, which
oversimplifies the problem but it also gives the
chance of recognizing some patterns. The assump-
tion is that all lemmas and their inflections have the
following form for all languages

STEM+SUFFIX — STEM+SUFFIX'

as illustrated in the following examples for English
and Spanish:

play+e — play+ing
Jug+ar — jug+ando

play — playing
Jugar — jugando

Pipeline

We use a pipeline that includes four different steps.
These are described below.

3.1 Stepl

In the first step, for each lemma ! in the lemma
list L and each word w in the corpus/dictionary
D, all possible splits l%+l|2”, l%—i—lgl,.., llll‘—i—e, and
w%+w|2w|, w%+w§“”|,.., w‘lw‘ +€ are generated. (We
use v, with 0 <4 < j < |v|, to denote the sub-
string v;..v; of a string v.) We assume the stem (the
hypothesized STEM) to be nonempty but allow the
suffix to be empty. For the Spanish lemma jugar we
thus get j4ugar, ju+gar, jug+ar, juga+r, and
Jugar+e.

3.2 Step2

In the second step, we determine the inflections of
the regular verbs of the language. These will be
used for the estimation of the morphological rich-
ness 7., of the lemmas (verbs) in the third step.
The morphological richness of the lemmas can
be identified with the number of combinations of
those tense, aspect, mood, and agreement features
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that can be distinctively morphologically realized.
Because the morphological richness of the lem-
mas (verbs) does not tend to vary much across
the different lemmas (verbs), even if they inflect
semi-irregularly or irregularly, we assume that each
lemma has 7, different inflections. r,, thus pro-
vides an upper bound on the number of cells of the
paradigms of the language/corpus.

For determining r,, we identify the inflections
of the lemmas with regular inflection. First, we
determine for each splitted lemma [ = r+s the
number of potential inflections of the hypothe-
sized stem 7, that is r+s’, in D. This is the set
Srts = {8 | r+s € D}. Then, for regularly in-
flecting lemmas, S, will be large for the actual
split but also for any split within the stem. This
is illustrated for the German lemma spielen (play)
with the actual split spiel+en below.

Sxpiele+n = {G, n}

Sypicten = {€, st, t, en, ...}

Sypietien = {le, Ist, It, len, ...}

To accommodate for this deficiency, we also con-
sider pairs of splitted lemmas [ = r+s, I’ = r'+s
with distinct stem endings 7|, # fr"r,| and we de-

termine the split i of s that yields the maximum
number of common inflections:

1= maXie(o,..Jsl} |9, ol 08,1 el

We choose for each lemma pair [, I’ the splits
P+5 and #+8, with #=rs), # =r'sh, and
5= s‘i , and consider their common suffixes in
D: Sq50 Sf-/+§.

Because regularly inflecting verbs tend to share
their inflections, this lemma pairing allows us to re-
liably predict that, for example, the stems of spielen
and gehen are spiel and geh.

Sypictetn N Sgenetn = {€, N}

Sxpiel—i—en N Sgeh+en = {6, St, t, en, }

Sspie—i—len N Sge—‘rhen =0

Finally, for all splitted lemmas 7+35 we collect
the suffixes in S;; in one bag.

3.3 Step3

The goal of this step is to group different realiza-
tions of the same suffix. The previous step captures
relevant suffixes, but in some cases, some parts of
the stem are also included in these suffixes, or there
might be some slight differences, because of mor-
phophonological changes. In order to group them,
we employ K-Means.



When using K-means we need a function that
calculates the distance between the elements, and
based on this distance, the instances will be clus-
tered. We decided to employ a modified version
of Minimum Edit Distance. Our modified version
tries to punish changes that are made at the end
of the suffix. The assumption in this case, is that
changes at the beginning of the suffix are more
likely to be caused by the stem (and they could be
the same suffix). On the other hand, if there are
changes at the end, it would be a different suffix.
Our edit distance algorithm allows insertion and
deletion as possible changes. We also assume that
it is worse to substitute a vowel with a consonant,
than changing a vowel with a vowel. Therefore,
this would happen:

Distance (era, bra) > Distance (era, ara)

‘ ntar ntaron  aron ar
ntar 0.000 0939 0.778 0.094
ntaron - 0.000 0.015 0.832
aron - - 0.000 0.656
ar - - - 0.000

We estimate that the number of paradigms (7,,)
in a language is approximately the third of the
number of different suffixes found in the previ-
ous step. This number was estimated based on
the behaviour of the model considering Swedish
data. Therefore, K-means will reduce the num-
ber of possible suffixes to the third (this is a pa-
rameter that will be tuned in the future). For ex-
ample, one of the clustered groups found in this
step considering the Spanish data would be this:
{rd, erd,derd,ard,ird}. This corresponds to the
suffix of future simple, third person singular.

34 Step4

In the previous steps we will have generated pos-
sible suffixes for each cell in a paradigm. Now,
the goal is to make a guess of how a word form
should be generated. For example, in Spanish, if
we have the lemma sanar, and we want to build the
first person singular of the future simple tense (sa-
naré), we could expect the lemma to be combined
with suffixes like é, ré, aré, iré, and so on. These
suffixes would be the output of the previous step.
First of all, for each lemma, the model needs
to decide the position in which we will split the
lemma, as following the previous assumption a
word will have this shape: STEM+SUFFIX. In or-
der make that decision, we check how often we
associate each lemma with a specific stem in the
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output of step 2, and use the most frequently occur-
ring stem for all the suffixes. For example, for the
verb sanar, in Spanish, we get these frequencies:
san:15, sana:21, sa:1, and therefore, we
would use the stem sana.

We, then, try to join that stem with the clustered
suffixes. Each stem will be joined with one suf-
fix from each cluster. In order to decide which
is the best suffix, we use a bigram character-level
language model to estimate the probability of the
output sequences, trained on the input bible. These
are the probabilities that we get if we consider the
example of the stem sana (from sanar) and suffixes
é, ré, aré and iré in Spanish.

Candidate output ‘ Probability

sanaé 0.0
sanaré 4.097e — 07
sanaaré 1.272e — 10
sanairé 2.201e — 10

Obviously, in this case, the conjugation sanaré
would be returned.

3.5 Expansion of the lemma list

At this point, the model produced a little amount
of suffixes. Then, we decided to extend the list of
input lemmas, so that it can find new suffixes and
increase, therefore, the recall of the model.

We obtain new lemmas by training a very simple
verb classifier. We create a simple dataset with
the input lemmas and some random words from
the corpus. The input lemmas will be tagged as
verbs and the random words will be tagged as non-
verbs. We, then, train a simple Logistic Regression
model, using character uni-, bi- and trigrams for
representing each word. We also include word
boundary symbols. For instance, in Spanish we
would have cases like:

Word Features (trigrams) class
comer | <co, com, ome, mer, me> \Y
plaza <pl,pla, laz,aza, za> NV

Using this approach we obtain new verbs that
can be used in our Pipeline. The model that uses
the extended list of lemmas for extracting suffixes
is called the Flexible model, and on the other hand,
the initial model (the one that uses only the initial
lemmas as input) is called the Non-flexible model.

4 Results

Table 1 and table 2 show our models performance
for the development languages and also the test



Development languages

Language Gold Baseline Non-flexible model Flexible model

no. of slots | no. of slots | macro | no. of slots | macro | no. of slots | macro
Maltese 32 17 | 0.2029 2| 0.013 254 | 0.0022
Persian 136 31 | 0.0605 2 1 0.0074 11 | 0.0155
Portuguese 76 34 | 0.3964 70 | 0.1275 1104 | 0.0109
Russian 16 19 | 0.4132 10 | 0.0706 387 | 0.0035
Swedish 11 15 | 0.4167 17 | 0.2282 588 | 0.0093

Table 1: Macro average results and the number of predicted slots for the Baseline model together with our Non-
flexible and Flexible models, tested on development languages.

Test languages

Language Gold Baseline Non-flexible model Flexible model

no. of slots | no. of slots | macro | no. of slots | macro | no. of slots | macro
Basque 1658 27 | 0.0006 2 | 0.0001 30 | 0.0002
Bulgarian 54 34 | 0.3169 13 | 0.0415 138 | 0.0299
English 5 4| 0.662 71 0.1729 51 | 0.0353
Finnish 141 21 | 0.055 108 | 0.0208 1169 | 0.0039
German 20 9 0.29 40 | 0.0498 425 | 0.007
Kannada 57 172 | 0.1512 1] 0.0169 44 1 0.0427
Navajo 30 3] 0.0327 0.002 38 | 0.0013
Spanish 70 29 | 0.2367 40 | 0.1084 225 | 0.0352
Turkish 120 104 | 0.1553 502 | 0.0071 1772 | 0.0011

Table 2: Macro average results and the number of predicted slots for the Baseline model together with our Non-

flexible and Flexible models, tested on test languages.

languages. Unfortunately, we could not surpass the
baseline model in any of the languages. We can
say that among the development language results,
Portuguese and Swedish are the ones that are best
captured by the Non-flexible model. Considering
the test languages, Spanish and English are the
ones that were best modeled by the Non-flexible
model.

It also seems that while the flexible model might
have a better recall, the obtained result is not good
enough, and therefore, it still requires some filter-
ing.

5 Discussion and Future Work

We have presented our approach for automatically
discovering morphological paradigms, given a text
and list of lemmas. As mentioned above, our results
are behind the official baseline, and therefore, there
is a wide range of possibilities for improvement.
We discuss some of them below.

We assumed each inflected form to be decom-
posable into a stem and a suffix. This could be, for
example, sufficient for English or Spanish, but not

114

for languages such as German that follow a two
splits pattern:

STEM+SUFFIX — PREFIX+STEM+SUFFIX’

In German, for example, participles are formed by
prefixing ge:

play — played play+e — play+ed
spielen — gespielt | spiel+en — ge+spiel+t

Apart from that, a much more straightforward
estimate of the morphological richness r,, could,
for example, be obtained by just considering the
triple 1! = #l4s, 12 = #2+s, 13 = #3+s of opti-
mally splitted distinct lemmas with the maximum
number of common suffixes. Because these lem-
mas are most likely to be frequently used lemmas
with regular inflection, the size of the union of their
inflections would presumably yield a good estimate
of r,,,. Clustering of these triples could also help
in identifying verb classes with distinct but regular
inflection.

Moreover, splitting of compound verbs of the
form X+V, with X typically a noun or verb, would
certainly improve performance because the inflec-



tions of the verb V could be used for the typically
less frequent compound verb X+V.

With respect to the writing system, the Basque
bible follows old orthographical rules. On the other
hand, the lemmas were written following more re-
cent orthography rules. This lack of consistency
makes the task a challenge, and we expect it to
happen in other languages as well. This issue re-
quires special attention, by maybe applying some
preprocessing to the lemmas to accommodate to
the old writing system (Etxeberria et al., 2019).

Also, we mentioned at the beginning of the ar-
ticle that we have not used any neural network
based component, and these would be very useful
for learning the morphophonological changes that
commonly happen when inflecting words. There-
fore, we would like to incorporate a Sequence-
to-Sequence model at the end of our pipeline
(Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017).
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