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Abstract
This paper presents our system for the SIG-
MORPHON 2020 Shared Task. We build off
of the baseline systems, performing exact in-
ference on models trained on language family
data. Our systems return the globally best so-
lution under these models. Our two systems
achieve 80.9% and 75.6% accuracy on the test
set. We ultimately find that, in this setting,
exact inference does not seem to help or hin-
der the performance of morphological inflec-
tion generators, which stands in contrast to its
affect on Neural Machine Translation (NMT)
models.

1 Introduction

Morphological inflection generation is the task of
generating a specific word form given a lemma and
a set of morphological tags. It has a wide range
of applications—in particular, it can be useful for
morphologically rich, but low-resource languages.
If a language has complex morphology, but only
scarce data are available, vocabulary coverage is
often poor. In such cases, morphological inflection
can be used to generate additional word forms for
training data.

Typologically diverse morphological inflection
is the focus of task 0 of the SIGMORPHON Shared
Tasks (Vylomova et al., 2020), to which we sub-
mit this system. Specifically, the task requires the
aforementioned transformation from lemma and
morphological tags to inflected form. A main chal-
lenge of the task is that it covers a typologically
diverse set of languages, i.e. languages have a wide
range of structural patterns and features. Addition-
ally, for a portion of these languages, only scant
resources are available.

Our approach is to train models on language
families rather than solely on individual languages.
This strategy should help us overcome the problems
frequently encountered for low-resource tasks, e.g.,

overfitting, by increasing the amount of training
data used for each model. The strategy is viable due
to the typological similarities between languages
within the same family. We combine two of the
neural baseline architectures provided by the task
organizers, a multilingual Transformer (Wu et al.,
2020) and a (neuralized) hidden Markov model
with hard monotonic attention (Wu and Cotterell,
2019), albeit with a different decoding strategy:
we perform exact inference, returning the globally
optimal solution under the model.

2 Background

Neural character-to-character transducers (Faruqui
et al., 2016; Kann and Schütze, 2016) define a
probability distribution pθ(y | x), where θ is a
set of weights learned by a neural network and x
and y are inputs and (possible) outputs, respec-
tively. In the case of morphological inflection, x
represents the lemma we are trying to inflect and
the morphosyntactic description (MSDs) indicat-
ing the inflection we desire; y is then a candidate
inflected form of the lemma from the set of all valid
character sequences Y . Note that valid character
sequences are padded with distinguished tokens,
BOS and EOS, indicating the beginning and end of
the sequence.

The neural character-to-character transducers
we consider in this work are locally normalized.
Specifically, the model pθ is a probability distri-
bution over the set of possible characters which
models pθ(· | x,y<t) for any time step t. By the
chain rule of probability, pθ(y | x) decomposes as

pθ(y | x) =
|y|∏
t=1

pθ(yt | x,y<t) (1)

The decoding objective then aims to find the
most probable sequence among all valid sequences:
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y? = argmax
y∈Y

log pθ(y | x) (2)

This is known as maximum a posteriori (MAP)
decoding. While the above optimization problem
implies that we find the global optimum y?, we
often only perform a heuristic search, e.g., beam
search, since performing exact search can be quite
computationally expensive due to the size of Y
and the dependency of pθ(· | x,y<t) on all previ-
ous output tokens. For neural machine translation
(NMT) specifically, while beam search often yields
better results than greedy search, translation quality
almost always decreases for beam sizes larger than
5. We refer the interested reader to the large num-
ber of works that have studied this phenomenon in
detail (Koehn and Knowles, 2017; Murray and Chi-
ang, 2018; Yang et al., 2018; Stahlberg and Byrne,
2019).

Exact decoding effectively stretches the beam
size to infinity (i.e. does not limit it), finding the
globally best solution. While the effects of exact
decoding have been explored for neural machine
translation (Stahlberg and Byrne, 2019), to the best
of our knowledge, they have not yet been explored
for morphological inflection generation. This is
a natural research question as the architectures of
morphological inflection generation systems are
often based off of those for NMT.

3 Data

We use the data provided by the SIGMORPHON
2020 shared task, which features lemmas, inflec-
tions, and corresponding MSDs (following uni-
morph schema (Kirov et al., 2018)) for 90 lan-
guages in total. Data was released in two phases;
the first phase included languages from five fam-
ilies: Austronesian, Niger-Congo, Uralic, Oto-
Manguean, and Indo-European. Data from the
second phase included languages belonging to
Afro-Asiatic, Algic, Australian, Dravidian, Ger-
manic, Indo-Aryan, Iranian, Niger-Congo, Nilo-
Sahan, Romance, Sino-Tibetan, Siouan, Tungu-
sic, Turkic, Uralic, and Uto-Aztecan families.
The full list of languages can be found on the
task website: https://sigmorphon.github.io/

sharedtasks/2020/task0/.
Due to scarcity of resources available to the

task organizers, many of the languages had only a
few morphological forms annotated. For example,
Zarma, a Songhay language, had only 56 available

inflections in the training set and 9 in the develop-
ment set.

4 System description

Our systems are built using two model architec-
tures provided as baselines by the task organizers:
a multilingual Transformer (Wu et al., 2020) and
a (neuralized) hidden Markov model (HMM) with
hard monotonic attention (Wu and Cotterell, 2019).
We then perform exact inference on the models.
The following subsections explain the two compo-
nents separately.

4.1 Model Architectures

The architectures of both models exactly follow
those of the Transformer and HMM proposed as
baselines for the SIGMORPHON 2020 Task 0. We
do this in part to create a clear comparison between
morphological inflection generation systems that
perform inference with exact vs. heuristic decoding
strategies.

We trained HMMs for each language family for
a maximum of 50 epochs and Transformers for a
maximum of 20000 steps. Early stopping was per-
formed if subsequent validation set losses differed
by less than 1e − 3. Batch sizes of 30 and 100,
respectively, were used. Other training configura-
tions followed those of the baseline systems.

Due to the resource scarcity for many of the
task’s languages, we used entire language families
to train models rather than individual languages.
Specifically, we aggregated the data from all lan-
guages of a given family, using a cross-lingual
learning approach. We did not subsequently fine-
tune the models on individual languages. Specifi-
cally, we do not do any additional training on indi-
vidual languages nor do we re-target the vocabulary
during decoding. This means generation of invalid
characters (i.e. invalid for a specific language) is
possible.

4.2 Decoding

For decoding, we perform exact inference with a
search strategy built on top of the SGNMT library
(Stahlberg et al., 2017). Specifically, we use Di-
jkstra’s search algorithm, which provably returns
the optimal solution when path scores monotoni-
cally decrease with length. From equation 1, we
can see that the scoring function for sequences y
is monotonically decreasing in t, therefore meet-
ing this criterion. Additionally, to prevent a large

https://sigmorphon.github.io/sharedtasks/2020/task0/
https://sigmorphon.github.io/sharedtasks/2020/task0/
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Greedy Beam5
acc dist acc dist

ang 0.720 0.52 0.726 0.48
azg 0.921 0.22 0.920 0.28
ceb 0.820 0.41 0.820 0.39
cly 0.764 0.44 0.762 0.50
cpa 0.846 0.22 0.845 0.23
czn 0.800 0.48 0.793 0.54
deu 0.977 0.03 0.976 0.03
dje 0.188 1.88 0.000 2.38

Table 1: Accuracy and Levenshtein distance on the test
set for greedy and beam search with beam size 5 for
HMMs.

Greedy Beam5
acc dist acc dist

ang 0.574 0.76 0.578 0.75
azg 0.808 0.63 0.813 0.62
ceb 0.874 0.27 0.874 0.27
cly 0.653 0.72 0.657 0.71
cpa 0.651 0.52 0.653 0.52
czn 0.695 0.62 0.702 0.59
deu 0.883 0.19 0.882 0.19
dje 0.938 0.12 0.938 0.12

Table 2: Accuracy and Levenshtein distance on the test
set for greedy and beam search with beam size 5 for
Transformers.

memory footprint, we can lower bound the search
by the score of the empty string, i.e. stop exploring
solutions whose scores become less than the empty
string at any point in time. We return the globally
best inflection.

5 Results on the Shared Task test data

Results on the test data from SIGMORPHON 2020
Task 0 can be found in Table 3. For comparison
purposes, Tables 1 and 2 show the performance
of our models with greedy and beam search for a
selection of languages.

5.1 Discussion

The results in Table 3 indicate that the HMM per-
formed better in combination with exact decoding
than the Transformer. On average over the 90 lan-
guages, the HMM achieved an accuracy of 80.9%
in comparison to only 75.6% for the Transformer.
Performance by Levenshtein distance looks simi-
lar: the average Levenshtein distances were 0.5 and
0.62 for the HMM and Transformer, respectively.

A particularly interesting language to study in
this scenario is Zarma (dje), which only has 56 sam-
ples in the training set, 9 samples in the develop-
ment set and 16 samples in the test set. Moreover,
it is the only language in its family, Nilo-Sahan.
The terrible performance of our system on this
language compared with greedy search suggests
that low-resource settings may lead to weak per-
formance with exact decoding. Out of the other

languages that performed poorly, many were from
the Germanic and Uralic family. Poor performance
on these languages may stem from the fact that
they belong to a family with high-resource lan-
guages. As we trained on language family data
and did not fine-tune the models, it is possible that
lower-resource languages in a high-resource fam-
ily, which are underrepresented in the training data,
are not adequately modelled. In these setting, per-
formance would likely be improve noticeably by
fine-tuning on the individual languages.

6 Conclusion

We perform exact inference on two baseline neural
architectures for morphological inflection, a Trans-
former and a (neuralized) hidden Markov model
with hard monotonic attention, to find the inflec-
tions with the globally best score under the model.
On test data, the hidden Markov model showed
better results: on average, it achieved 80.9% ac-
curacy and a Levenshtein distance of 0.5, while
the Transformer performed worse with 75.6% and
0.62 respectively. Overall, exact decoding of mor-
phological inflection generators does not appear to
significantly affect model performance compared
with greedy search. This is notable when compared
with NMT systems, for which exact search often
leads to performance degradation.
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Our Systems Baselines
Transformer HMM Transformer HMM

language acc dist acc dist acc dist acc dist
aka 0.966 0.105 0.980 0.059 0.999 0.000 1.000 0.000
ang 0.569 0.770 0.715 0.512 0.683 0.540 0.719 0.640
ast 0.925 0.178 0.976 0.061 0.993 0.010 0.996 0.010
aze 0.833 0.342 0.786 0.410 0.813 0.340 0.727 0.880
azg 0.813 0.618 0.919 0.283 0.922 0.220 0.916 0.270
bak 0.961 0.080 0.921 0.133 0.993 0.010 0.960 0.290
ben 0.965 0.072 0.989 0.024 0.993 0.010 0.993 0.040
bod 0.828 0.235 0.838 0.213 0.844 0.200 0.832 0.220
cat 0.948 0.116 0.939 0.146 0.996 0.010 0.996 0.010
ceb 0.874 0.270 0.820 0.387 0.865 0.280 0.847 0.310
cly 0.657 0.713 0.762 0.487 0.800 0.390 0.799 0.500
cpa 0.650 0.526 0.841 0.232 0.776 0.320 0.864 0.200
cre 0.684 1.250 0.694 1.210 0.667 1.200 0.668 1.260
crh 0.963 0.045 0.971 0.042 0.977 0.030 0.969 0.060
ctp 0.339 1.523 0.525 1.167 0.441 1.310 0.527 1.970
czn 0.702 0.593 0.793 0.551 0.784 0.490 0.813 0.430
dak 0.955 0.097 0.933 0.145 0.956 0.080 0.929 0.160
dan 0.583 0.664 0.672 0.448 0.655 0.450 0.684 5.270
deu 0.882 0.188 0.976 0.033 0.935 0.100 0.984 0.040
dje 0.938 0.125 0.000 4.313 0.875 0.190 0.000 2.880
eng 0.943 0.128 0.958 0.083 0.954 0.090 0.963 0.080
est 0.604 0.996 0.872 0.432 0.880 0.270 0.882 0.480
evn 0.572 1.061 0.536 1.281 0.571 1.060 0.540 1.200
fas 0.999 0.001 0.999 0.001 1.000 0.000 0.999 0.000
fin 0.847 0.280 0.982 0.033 0.958 0.070 0.992 0.020
frm 0.963 0.102 0.986 0.092 0.995 0.010 0.995 0.010
frr 0.214 2.885 0.317 3.539 0.637 1.080 0.782 0.700
fur 0.951 0.075 0.614 0.829 0.994 0.010 0.974 0.120
gaa 0.793 0.746 0.828 0.426 1.000 0.000 1.000 0.000
glg 0.746 0.560 0.927 0.161 0.996 0.010 0.997 0.010
gmh 0.248 1.766 0.766 0.340 0.745 0.360 0.887 0.150
gml 0.106 2.447 0.494 1.267 0.502 1.150 0.537 2.070
gsw 0.722 0.766 0.873 0.244 0.803 0.370 0.888 0.550
hil 0.945 0.172 0.924 0.315 0.950 0.150 0.941 0.210
hin 1.000 0.001 1.000 0.000 1.000 0.000 1.000 0.000
isl 0.745 0.544 0.933 0.136 0.878 0.260 0.950 0.300
izh 0.107 2.357 0.223 1.616 0.563 0.830 0.683 0.790
kan 0.761 0.779 0.768 0.799 0.767 0.640 0.740 0.750
kaz 0.936 0.304 0.955 0.254 0.971 0.150 0.955 0.240
kir 0.953 0.073 0.970 0.064 0.976 0.040 0.976 0.040
kjh 0.875 0.229 0.900 0.138 0.992 0.010 0.921 0.100
kon 0.981 0.038 0.981 0.026 0.987 0.010 0.987 0.010
kpv 0.672 0.711 0.749 0.550 0.945 0.100 0.932 0.250
krl 0.831 0.309 0.964 0.072 0.948 0.080 0.971 0.050
lin 0.891 0.261 0.870 0.283 0.978 0.020 1.000 0.000
liv 0.286 1.893 0.646 0.721 0.603 0.880 0.713 2.230
lld 0.926 0.158 0.974 0.052 0.996 0.010 0.998 0.000
lud 0.220 2.207 0.390 1.573 0.415 1.230 0.512 1.050
lug 0.852 0.295 0.870 0.228 0.909 0.130 0.901 0.150
mao 0.667 0.667 0.524 1.071 0.619 0.710 0.548 0.930
mdf 0.578 1.094 0.692 0.781 0.910 0.200 0.891 0.310
mhr 0.616 1.135 0.724 0.833 0.866 0.250 0.838 0.350
mlg 0.984 0.024 0.984 0.016 1.000 0.000 0.984 0.020
mlt 0.935 0.093 0.890 0.170 0.935 0.090 0.873 0.250
mwf 0.887 0.279 0.779 0.500 0.896 0.270 0.608 0.920
myv 0.779 0.587 0.782 0.546 0.930 0.180 0.888 0.360
nld 0.880 0.210 0.971 0.054 0.961 0.070 0.980 0.040
nno 0.472 0.799 0.636 0.517 0.698 0.480 0.789 0.610
nob 0.661 0.659 0.674 0.630 0.752 0.470 0.748 0.680
nya 0.974 0.060 0.966 0.090 1.000 0.000 1.000 0.000
olo 0.795 0.372 0.896 0.185 0.876 0.200 0.930 0.130
ood 0.793 0.439 0.745 0.529 0.809 0.410 0.758 0.490
orm 0.990 0.020 0.978 0.049 0.990 0.010 0.975 0.040
ote 0.913 0.142 0.964 0.084 0.969 0.040 0.991 0.010
otm 0.793 0.592 0.955 0.130 0.915 0.240 0.981 0.050
pei 0.620 0.800 0.715 0.679 0.728 0.570 0.714 0.610
pus 0.888 0.280 0.878 0.315 0.898 0.260 0.886 0.380
san 0.906 0.185 0.915 0.183 0.931 0.140 0.910 0.210
sme 0.776 0.481 0.978 0.053 0.944 0.110 0.986 0.040
sna 0.965 0.094 0.961 0.103 1.000 0.000 1.000 0.000
sot 0.879 0.343 0.909 0.242 0.990 0.010 1.000 0.000
swa 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
swe 0.782 0.387 0.947 0.093 0.897 0.180 0.976 0.200
syc 0.916 0.084 0.901 0.099 0.900 0.100 0.898 0.100
tel 0.938 0.300 0.941 0.333 0.949 0.260 0.934 0.270
tgk 0.563 1.125 0.875 0.375 0.688 0.750 0.875 0.380
tgl 0.699 0.862 0.617 1.368 0.705 0.830 0.640 1.070
tuk 0.858 0.510 0.848 0.530 0.856 0.430 0.858 0.450
udm 0.796 0.525 0.840 0.400 0.970 0.060 0.959 0.110
uig 0.953 0.163 0.983 0.065 0.988 0.020 0.991 0.010
urd 0.987 0.023 0.991 0.016 0.991 0.020 0.991 0.080
uzb 0.991 0.028 0.991 0.067 0.995 0.020 0.995 0.020
vec 0.816 0.414 0.924 0.174 0.995 0.010 0.996 0.010
vep 0.666 0.636 0.800 0.357 0.781 0.330 0.805 0.340
vot 0.043 3.032 0.093 2.192 0.470 0.930 0.605 0.800
vro 0.175 2.583 0.233 1.689 0.233 1.640 0.388 1.320
xno 0.235 3.039 0.549 1.686 0.765 1.240 0.804 2.880
xty 0.842 0.360 0.875 0.360 0.868 0.330 0.882 0.470
zpv 0.724 0.750 0.789 0.535 0.816 0.410 0.803 1.500
zul 0.628 1.000 0.808 0.449 0.910 0.190 0.872 0.210
average 0.756 0.620 0.809 0.500 0.859 0.307 0.860 0.485
std.dev. 0.237 0.712 0.208 0.692 0.161 0.371 0.170 0.785

Table 3: Accuracy and Levenshtein distance for both of our systems, as well as for the baselines.
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