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Abstract

Human tackle reading comprehension not only
based on the given context itself but often rely
on the commonsense beyond. To empower the
machine with commonsense reasoning, in this
paper, we propose a Commonsense Evidence
Generation and Injection framework in read-
ing comprehension, named CEGI. The frame-
work injects two kinds of auxiliary common-
sense evidence into comprehensive reading to
equip the machine with the ability of ratio-
nal thinking. Specifically, we build two evi-
dence generators: one aims to generate tex-
tual evidence via a language model; the other
aims to extract factual evidence (automati-
cally aligned text-triples) from a common-
sense knowledge graph after graph completion.
Those evidences incorporate contextual com-
monsense and serve as the additional inputs to
the reasoning model. Thereafter, we propose
a deep contextual encoder to extract seman-
tic relationships among the paragraph, ques-
tion, option, and evidence. Finally, we employ
a capsule network to extract different linguistic
units (word and phrase) from the relations, and
dynamically predict the optimal option based
on the extracted units. Experiments on the Cos-
mosQA dataset demonstrate that the proposed
CEGI model outperforms the current state-of-
the-art approaches and achieves the highest ac-
curacy (83.6%) on the leaderboard.

1 Introduction

Contextual commonsense reasoning has long been
considered as the core of understanding narratives
(Hobbs et al., 1993; Andersen, 1973) in reading
comprehension (Charniak and Shimony, 1990). De-
spite the broad recognition of its importance, the
research of reasoning in narrative text is limited due
to the difficulty of understanding the causes and ef-
fects within the context. Comprehending reasoning
requires not only understanding the explicit mean-
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Figure 1: Example of generated evidence helping an-
swer the commonsense question.

ing of each sentence but also making inferences
based on implicit connections between sentences.

To answer a contextual commonsense question
correctly, two important characteristics need to be
well considered. First, the information that is re-
quired to infer a correct answer may be beyond the
context, and hence adding external commonsense
knowledge to guide the reasoning is necessary. Sec-
ond, how to use external knowledge to gain contex-
tual understanding between the paragraph, question
and option set is difficult but important. Despite the
great success of large pre-trained models such as
BERT (Devlin et al., 2018), GPT (Radford et al.,
2018) and RoBERTa (Liu et al., 2019), recent stud-
ies suggest that those models fail to capture suf-
ficient knowledge and provide commonsense in-
ference. For example, Poerner et al. (2019) show
that language models perform well in reasoning
about entity names, but fail to capture rich factual
knowledge. Moreover, Talmor et al. (2019) state
that language models fail on half of the reasoning
tasks which require symbolic operations such as
comparison, conjuction and composition.

To this end, we introduce a Commonsense
Evidence Generation and Injection framework in
reading comprehension, named CEGI, which gen-
erates useful evidence from textual and factual
knowledge and injects the generated evidence into
pre-trained models such as RoBERTa. We propose
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to generate evidence regarding the facts and their
relations. More specifically, we use language mod-
els to generate textual evidence and extract factual
evidence from a knowledge graph after graph com-
pletion. We then inject both evidences into the pro-
posed contextual commonsense reasoning model
to predict the optimal answer. As shown in Figure
1, the Textual Generated Evidence “He will call
for medical attention” and Factual Generated Evi-
dence “both blood & ambulance locate at hospital”
can help the model find the correct answer “An
ambulance would likely come to the scene”.

To capture relations between the paragraph and
question, many reading comprehension models
(Zhang et al., 2019a; Tang et al., 2019) have been
proposed. However, those reasoning models are
essentially based on the given context without un-
derstanding the facts behind. Moreover, in many
situations, the candidate option set contains dis-
tractors that are quite similar to the correct answer.
In other words, understanding the relations among
the option set is also important. We employ a cap-
sule network (Sabour et al., 2017), which uses a
routing-by-agreement mechanism to capture the
correlations among different options and make the
final decision.

Our proposed CEGI framework not only utilizes
external commonsense knowledge to generate rea-
soning evidence but also adopts a capsule network
to make the final answer prediction. The explain-
able evidence and the ablation studies indicate that
our method has a large impact on the performance
of the commonsense reasoning in reading compre-
hension. The contributions of this paper are sum-
marized as follows: 1) We introduce two evidence
generators which are learned from textual and fac-
tual knowledge sources; 2) We provide an injection
method that can infuse both evidences into the con-
textual reasoning model; 3) We adapt a capsule net-
work to our reasoning model to capture interactions
among candidate options when making a decision;
4) We show our CEGI model outperforms current
state-of-the-art models on the CosmosQA dataset
and generates richer interpretive evidence which
helps the commonsense reasoning.

2 Related Work

2.1 Multi-choice Reading Comprehension

To model the relation and alignment between the
pairs of paragraph, question and option set, various
approaches seek to use attention and pursue deep

representation for prediction. Tang et al. (2019)
and Wang et al. (2018b) model the semantic rela-
tionships among paragraph, question and candidate
options from multiple aspects of matching. Zhu
et al. (2018a) propose a hierarchical attention flow
model, which leverages candidate options to cap-
ture the interactions among paragraph, question
and candidate options. Chen et al. (2019) merge
various attentions to fully extract the mutual infor-
mation among the paragraph, question and options
and form the enriched representations.

2.2 Commonsense Knowledge Injection

To empower the model with human commonsense
reasoning, various approaches have been proposed
on the context-free commonsense reasoning task.
The majority of the approaches are focusing on
finding the question entity and a reasoning path on
the knowledge graph to obtain the answer entity
(Huang et al., 2019; Zellers et al., 2018; Talmor
et al., 2018). For an instance, Lin et al. (2019) con-
struct graphs to represent relevant commonsense
knowledge, and then calculate the plausibility score
of the path between the question and answer entity.
Lv et al. (2019) extract evidence from both struc-
tured knowledge base and unstructured texts to
build a relational graph and utilize graph attention
to aggregate graph representations to make final
predictions. However for contextual commonsense
reasoning, it’s hard to find a single most relevant
entity from the paragraph or question to obtain the
correct answer.

Other approaches focus on enhancing the pre-
trained language models through injecting exter-
nal knowledge into the model and updating the
model parameters in multi-task learning (Zhang
et al., 2019b; Lauscher et al., 2019; Levine et al.,
2019). A knowledge graph injected ERNIE model
is introduced in (Zhang et al., 2019b) and a weakly
supervised knowledge-pretrained language model
(WkLM) is introduced in (Xiong et al., 2019). They
both inject the knowledge through aligning the
source with the fact triplets in WikiData. However,
the parameters need to be retrained when inject-
ing new knowledge, which could lead to the catas-
trophic forgetting (McCloskey and Cohen, 1989).

3 Task Definition

In multi-choice reading comprehension, we are
given a paragraph P with t tokens P =
[p1,p2, . . . ,pt], a question Q containing n tokens
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Evidence

[SEP]

[CLS]

Paragraph

[SEP]
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Figure 2: The proposed commonsense evidence generation and injection (CEGI) framework.

Q = [q1, q2, . . . , qn] and the option set with m
candidate options O = {O1,O2, . . . ,Om}, where
each candidate option is a text with h tokens
Oi = [o1, o2, . . . , oh]. The goal is to select the
correct answer A from the candidate option set.
For simplicity, we denote X = {P,Q,O} as one
data sample and denote y = [y1, y2, . . . , ym] as a
one-hot label, where each scale yi = 1(Oi = A) is
an indicator function. In the training stage, we are
givenN set of (X , y)N , the goal is to learn a model
f : X → y. In the testing, we need to predict ytest
given test samples X test.

When answering a question according to the
paragraph, we observe that the context itself of-
ten does not provide enough clues to guide us
to the correct answer. To this end, we need to
know comprehensive information beyond the con-
text and perform commonsense reasoning. Hence,
we split the task into two parts: evidence generation
and answer prediction, respectively. Our proposed
CEGI model addresses both parts accordingly by
two generators: textual evidence generator and fac-
tual evidence generator. In textual evidence gener-
ator, our goal is to generate relevant evidence text
E = [e1, e2, . . . , ek] given question Q and para-
graph P. Note that the number of evidence tokens
k may vary in different question and paragraph
pair. In factual evidence generator, the goal is to
generate relevant text that describes the relations
between facts where the facts are the entities from
paragraph, question and options. In the second part,
we aim to learn a classifier P (y|P,Q,O,E) that
predicts the correct option when a new data sam-
ple is given. By using the evidence generated from
the first part, we expect the reasoning model can

be enhanced with the auxiliary information, espe-
cially for those questions that require contextual
commonsense reasoning.

4 Methodology

To tackle reading comprehension task with com-
monsense reasoning, we introduce a commonsense
evidence generation and injection (CEGI) frame-
work. The system diagram of the CEGI framework
is shown in Fig. 2. First, the evidence generation
module produces textual evidence and factual ev-
idence. Those generated evidences will be used
as auxiliary inputs for the reasoning model. Sec-
ond, the contextual commonsense reasoning mod-
ule generates deep contextual features for the para-
graph, question, option and evidence. Meanwhile,
a bidirectional attention mechanism is applied to
the features to capture representations of the pair
of paragraph, question, option set and evidence.
Next, all pairs are concatenated and fed into a con-
volutional neural network for extracting different
linguistic units of the options. At least, a capsule
network is then applied to dynamically update the
representation vector of the candidate options. The
final answer is one of the options with the largest
vector norm. We describe more details of each com-
ponent in the following subsections.

4.1 Evidence Generation
It is worthy to mention that many commonsense
reasoning types, such as causes of events and ef-
fects of events, are important factors of understand-
ing the context in reading comprehension. While
those factors are often not explicit or given in the
paragraph and option set, answering such may be-
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come difficult. To this end, we seek to learn relevant
evidence that contains commonsense knowledge.
Specifically, we leverage pretrained language mod-
els to learn from both context and knowledge graph
that may contain reasoning relations. We exploit
two kinds of generators, textual evidence generator
and factual evidence generator.

4.1.1 Textual Evidence Generator

We observe that daily life events often follow a
common routine such that when one event hap-
pened, the resulting event or the cause of such an
event follows a specific pattern. For an example,
in Figure 1, the given paragraph describes a sce-
nario that the old man is hurt and the young man
is making a phone call. If we know that he is call-
ing for medical attention, answering the question
would become easy. Hence, the goal of our pro-
posed textual evidence generator is to generate the
text that follows daily life event routines. We rely
on a pretrained language model to acquire the tex-
tual evidence by using GPT2 (Radford et al., 2018)
and Uniml (Dong et al., 2019). Specifically, in the
training, we concatenate the paragraph, question
and the correct answer as the input to the standard
language model (Liu et al., 2018). Accordingly,
the textual evidence generated from the language
model is the following sentence after the question
text. Note that we stack [P [SEP] Q [SEP] A] as
the input to train the language model. Formally,
let [w1, . . . ,wT] = [P [SEP] Q [SEP] A]. The
language generation model aims to maximize the
following likelihood (Radford et al., 2018):

Lgen =
∑T

i=1
p(wi|w1, ...,wi−1), (1)

where the conditional probability p(wi|w1, . . . ,
wi−1) = f(w1, . . . ,wi−1) and f is a sequence
of operations that (i) converts each token wi

into token embedding Wi
e and position embed-

ding Wi
p; (ii) transforms them into features with

L layers where each layer feature is Hl(wi) =
hl(g(Wi−1

e ,Wi−1
p ),Hl(wi−1)), and (iii) converts

the feature into a probability using a linear clas-
sifier by predicting the next token wi.

Moreover, we aim to generate evidence that can
discriminate the correct answer from option dis-
tractors. Hence, we add the answer prediction loss
into the objective to fine-tune the language model.
The text input for the jth option is xj = [P [SEP] Q
[SEP] Oj]. We use all N samples to optimize the

following objective (with a regularization term λ):

Lclass =
∑

(x,y)∈{X ,y}

log(Softmax(HL(w0)Wy)),

(2)

Ltotal = Lgen + λ ∗ Lclass, (3)

where HL(w0) is the last layer feature of the first
token and Wy is the parameters to learn to predict
label y.
Test stage: we only use [P [SEP] Q] as the input
to the language model and use the model to gener-
ate the next sentence as an evidence which means
model is agnostic to the correct answer.

4.1.2 Factual Evidence Generator
Aside from the textual evidence that contains in-
formation about the facts of daily life routine, re-
lations between the facts are also important for
question answering. In this section, we propose to
utilize a factual knowledge graph to extract facts
and relations and use them as additional evidence.
Specifically, we use the ConceptNet (Speer et al.,
2017)1 as the base model. We use a knowledge
graph completion algorithm Bosselut et al. (2019)
to find new relations to further improve the quality
of the generated factual evidence.

We define Xs = {xs0, ..., xs|s|} as the subject,
Xr = {xr0, ..., xr|r|} as the relation, and Xo =

{xo0, ..., xo|o|} as the object. We use the [Xs [SEP]

Xr [SEP] Xo] triplets as the input to the knowl-
edge graph completion language model in Bosselut
et al. (2019) to generate additional triplets that con-
tain new subject and object relations. To generate
factual evidence, we first extract entities from the
given dataX . We then select the related entities that
match the subject Xs in forms of subject-relation-
object triplets. After that, we filter the triplets by
selecting the subject Xs∗ that follows: (i) part-of-
speech (POS) tag of Xs∗ word matches the POS
tag of the entity word; (ii) subject Xs∗ word fre-
quency is less than the word frequency of the object
Xo plus a threshold Ko; (iii) subject Xs∗ word is
not in the top-K frequent words based on the word
frequency table2; and (iv) the relation Xr in the
(Xs∗, Xr, Xo) triplets connects no more than Kr

objects from the same subject Xs∗. K, Ko and Kr

are the hyper-parameters. Finally, we convert the
1ConceptNet is a knowledge graph, which consists of

triples obtained from the Open Mind Common Sense entries.
2https://www.wordfrequency.info/free.

asp

https://www.wordfrequency.info/free.asp
https://www.wordfrequency.info/free.asp
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filtered triplets into a nature language sequences
as our factual evidences. For example, “(trouble,
Partof, life)” would be converted to “trouble is part
of life”.

4.2 Model Learning with Contextual
Commonsense Reasoning

After the relevant reasoning evidences are gener-
ated, the goal is to combine the evidence with the
given data and then build a reasoning model to
make a selection for the correct answer. In the fol-
lowing, we introduce our proposed contextual com-
monsense reasoning module, which utilizes con-
textual encoding, evidence injection and a capsule
network components to make the prediction.

Contextual Encoding Recently, RoBERTa (Liu
et al., 2019) has shown to be effective and powerful
in many natural language processing tasks and it
is potentially beneficial for generating deep con-
textual features as well. Here, we use RoBERTa
as an intermediate component to generate hid-
den representation of paragraph, question, the
ith option and evidence [Hi

cls,H
i
P,H

i
sepHi

Q,H
i
sep

Hi
Oi
,Hi

sep,Hi
E] = Encode([[CLS], P, [SEP], Q,

[SEP], Oi, [SEP],E]). We use the last layer of the
RoBERTa model to encode, and thus the function
Encode(·) returns the last layer features for each
token. The corresponding features of paragraph,
question, option and evidence are Hi

P ∈ Rd×t,
Hi

Q ∈ Rd×n, Hi
Oi
∈ Rd×h and Hi

E ∈ Rd×k,
where d is the dimension of the feature. Since we
have m options, we have m set of features.

Evidence Injection Given the previously gener-
ated evidence representation Hi

E. We aim to inte-
grate it with the paragraph Hi

P, question Hi
Q and

option Hi
Oi

. Here, we adopt the attention mecha-
nism used in QANet (Yu et al., 2018) to model the
interaction between Hi

E and the paragraph Hi
P:

SE
iP = Att(Hi

E,H
i
P) = Softmax(HiT

P WgHi
E)

(4)

GE
iP = Hi

ESET

iP , (5)

where Wg ∈ Rd×d is the bi-linear model parame-
ter matrix. Since SE

iP ∈ Rt×k is the activation map
(attention weights) between each token in P and
each token in E, the learned relation representa-
tion GE

iP ∈ Rd×t of the paragraph P contains evi-
dence information E. The other two relations GQ

iP

and GOi
iP regarding P can be generated accordingly.

Similarly, we can model the other interactions for

question Q as GP
iQ,G

E
iQ,G

Oi
iQ, and each option Oi

as GQ
iOi
,GE

iOi
and GP

iOi
.

To incorporate the relation information, we use
the co-matching algorithm introduced in Wang et al.
(2018b) to generate the final representation of the
input. First, we obtain the matching result between
the paragraph and the question as follows:

MQ
iP = (Wm[GQ

iP 	Hi
P;GQ

iP �Hi
P] + bm ⊗ 1)+,

(6)

where (·)+ denotes ReLU function, 1 =
[1, 1, . . . , 1]T ∈ Rt×1 is vector of all ones, and
Wm ∈ Rd×2d and bm ∈ Rd×1 are the model pa-
rameters. Following Tai et al. (2015) and Wang
et al. (2018b), we use notation 	 and � as the
element-wise subtraction and multiplication be-
tween two matrices and ⊗ as outer product of two
vectors. Similarly, we can obtain the other pairs as
ME

iP,M
Oi
iP , . . . ,M

P
iOi

. In the next step, we concate-
nate all the pairs regarding P as

CiP =
[
MQ

iP : MOi
iP : ME

iP

]
∈ R3d×t, (7)

where [:] denotes the vertical concatenation opera-
tion. Each column ci is the co-matching state that
concurrently matches a paragraph token with the
question, candidate option and the evidence. Ac-
cordingly, we can obtain the question representa-
tion CiQ and option representation CiOi . Finally,
we concatenate them all to obtain the final represen-
tation F = [C1, . . . ,Cm] ∈ R3d×m(t+n+h), where
each Ci = [CiP,CiQ,CiOi ] ∈ R3d×(t+n+h).

Since the final representation only contains the
fine-grid token-level information, we employ a con-
volutional neural network (CNN) to extract higher
level (phrase-level) patterns. To generate phrase pat-
terns with different size, we use two convolutional
kernels: size 1× 2 with stride 2 and size 1× 4 with
stride 4 to convolve with F along the dimension
of hidden state. In other words, such an operation
extracts non-overlapping moving windows on F
with window size 2 and 4.

R1 = MaxPooling1×2{CNN1×2(F)}
R2 = MaxPooling1×1{CNN1×4(F)}

To ensure R1 and R2 have the same dimension, we
use a max pooling of size 1×2 with stride 2 for R1

and a max pooling of size 1×1 with stride 1 for R2.
We concatenate R1 and R2 to generate phrase-level
representation L = [R1,R2] ∈ R3d×m((t+n+h)/2).
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With L, to predict the final answer, one of the
commonly applied operation is to simply take the
maximum over the hidden dimension of length
(t + n + h)/2. However, the max operation only
consider the most significant phrase for each can-
didate without aware of the others. To explore the
correlation between options and dynamically se-
lect the optimal one, we use dynamic routing-by-
agreement algorithm represented in Sabour et al.
(2017). Specifically, we convert Li to a capsule vj
using the following steps:

L̂j|i =WijLi, sj =
∑(t+n+h)/2

i=1
cij · L̂j|i,

vj =
||sj||2

1 + ||sj||2
sj
||sj||

,

where Li is the ith column vector of L, affine trans-
formation matrix Wij and weighting cij are the cap-
sule network model parameters. The learned L̂j|i
denotes the “vote” of the capsule j for the input cap-
sule i. The agreement of “prediction vector” L̂j|i
between the current jth output and ith parent cap-
sule is captured by the coupling coefficients cij. The
value of cij would increase if higher level capsule
sj and lower lever capsule Li highly agreed.

Model Learning If an option Oj is the correct
answer, we would like the top-level capsule vj to
have a high energy, otherwise, we expect the energy
of vj to be low. Since the L2-norm (square root of
the energy) of the capsule vector vj represents the
scoring of how likely the jth candidate is the correct
answer, we use the following loss function (Sabour
et al., 2017) to learn the model parameters:

Lpre =
∑m

j=1
{yi ·max(0,m+ − ||vj||)2

+ λ1(1− yi)max(0, ||vj|| −m−)2} (8)

where λ1 is a down-weighting coefficient, m+ and
m− are margins. In our experiments, we set m+ =
0.9, m− = 0.1, λ1 = 0.5.

5 Experiments

In the experiment, we evaluate the performance
of our proposed CEGI framework from different
aspects, including evidence generation tasks and
the answer prediction of contextual commonsense
reasoning tasks.

5.1 Dataset and Baseline
CosmosQA is the dataset that is designed for read-
ing comprehension with commonsense reasoning

(Huang et al., 2019). Samples are collected from
people’s daily narratives and the type of questions
are concerning the causes or effects of events. Par-
ticularly answering the questions require contex-
tual commonsense reasoning over the considerably
complex, diverse, and long context. In general, the
dataset contains a total of 35.2K multiple-choice
questions, including 25262 training samples, 2985
development samples, and 6963 testing samples.3

Baseline We categorize baseline methods into the
following three groups: 1. Co-Matching (Wang
et al., 2018b), Commonsense-RC (Wang et al.,
2018a), DMCN (Zhang et al., 2019a), Multiway
(Huang et al., 2019). 2. GPT2-FT (Radford et al.,
2018), BERT-FT (Devlin et al., 2018), RoBERTa-
FT (Liu et al., 2019). 3. Commonsense-KB (Li
et al., 2019), K-Adapter (Wang et al., 2020). The
baseline details are in appendix A.2.

Table 1: Comparison of approaches on CosmosQA (Ac-
curacy %) from the AI2 Leaderboard. T+F means using
generated textual and factual evidence together.

Model Dev Test
Co-Matching (Wang et al., 2018b) 45.9 44.7
Commonsense-RC (Wang et al., 2018a) 47.6 48.2
DMCN (Zhang et al., 2019a) 67.1 67.6
Multiway (Huang et al., 2019) 68.3 68.4
GPT-FT (Radford et al., 2018) 54.0 54.4
BERT-FT (Devlin et al., 2018) 66.2 67.1
RoBERTa-FT (Liu et al., 2019) 79.4 79.2
Commonsense-KB (Li et al., 2019) 59.7 \
K-Adapter (Wang et al., 2020) 81.8 \
CEGI(T+F) 83.8 83.6
Human \ 94.0

5.2 Experimental Results and Analysis
Table 1 shows the performance of different ap-
proaches reported on the AI2 Leaderboard.4.
Comparing to all methods, our proposed model
CEGI(T+F) has the highest accuracy on both devel-
opment set and test set. Most of the reading com-
prehension approaches utilize the attention mecha-
nism to capture the correlations between paragraph,
question and option set, therefore, the model tends
to select the one option that is semantically closest
to the paragraph. Among all of the group 1 meth-
ods, Multiway has the highest accuracy of 68.3%.

3The CosmosQA dataset can be obtained from https:
//leaderboard.allenai.org/cosmosqa/

4https://leaderboard.allenai.org/
cosmosqa/ The test dataset is hidden by the AI2
and methods like Commonsense-KB and K-Adapter are not
reported on the Leaderboard.

https://leaderboard.allenai.org/cosmosqa/
https://leaderboard.allenai.org/cosmosqa/
https://leaderboard.allenai.org/cosmosqa/
https://leaderboard.allenai.org/cosmosqa/
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Group 2 methods consider deep contextual rep-
resentation of the given paragraph, question and
option set, and increase the performance. Com-
paring group 2 methods with group 1 methods,
RoBERTa-FT, which uses dynamic masking and
large mini-batches strategy to train BERT, gains
11.1% accuracy increase compared to Multiway.

However, it is worthy to mention that more than
83% of correct answers are not in the given pas-
sages in the CosmosQA dataset. Hence, multi-
choice reading comprehension models do not gain
big improvement as they tend to select the choice
which has the most overlapped words with the
paragraph without commonsense reasoning. Even
though, group 2 methods consider connecting the
paragraph with question and option through a deep
bi-directional strategy, the reasoning for question
answering is still not well-addressed in the models.
By utilizing additional knowledge, Commonsense-
KB or K-Adapter teach pretrained models with
commonsense reasoning. K-Adapter gains 2.4%
accuracy increase than RoBERTa-FT. Those ap-
proaches leverage the structured knowledge but fail
to produce a prominent prediction improvement.
Comparing our CEGI approach with RoBERTa,
we gain a 4% increase and 2% increase than K-
Adapter, which demonstrates that injecting evi-
dence is beneficial and incorporating interactive
attentions can further enhance the model.

5.3 Evidence Evaluation

In this section, we investigate the generated evi-
dence from the textual generator and factual genera-
tor. Moreover, we study the quality of the generated
evidence on another dataset—CommonsenseQA.

5.3.1 Textual Evidence Generator
Dataset Open Mind Common Sense (OMCS) cor-
pus (Singh et al., 2002) is a crowd-sourced knowl-
edge database of commonsense statements 5, where
its English dataset contains a million sentences
from over 15,000 contributors. We consider using
this dataset to pretrain the textual evidence genera-
tor and using CosmosQA to fine-tune the generator.
Setup We use both BERT and GPT2 model to gen-
erate evidence and compare the results. To obtain
a language model that contains representation of
facts, we first pretrain both models with the OMCS
data using the loss function in Eq. 1. Then we use

5https://github.com/commonsense/
conceptnet5/wiki/Downloads

CosmosQA data to fine-tune the pretrained model
using multi-task loss in Eq. 3.

Metrics In line with prior work (Wang and Cho,
2019), we evaluate the performance of evidence
generation based on quality and diversity. In terms
of quality, we follow Yu et al. (2017) and compute
the BLEU score between the generated evidence
and the ground truth evidence to measure the simi-
larity. The perplexity (PPL) score is also reported as
a proxy for fluency. In terms diversity, we consider
using self-BLEU (Zhu et al., 2018b), which mea-
sures how similar between two generated sentences.
Generally, a higher self-BLEU score implies that
the model has a lower diversity.

Results From Table 2, we observe that, compared
to CEGI-GPT2, the CEGI-BERT generator has
higher diversity (Self-BLEU decreases 4 for bi-
gram and decreases 2.1 for tri-gram) but lower qual-
ity (BLEU decreases 1.3 for tri-gram and PPL in-
creases 27.1). Even though the perplexity on CEGI-
BERT is as good as CEGI-GPT2, after reading the
samples, we find out that many of the generated
language are fairly coherent. For a more rigorous
measure of generation quality, we collect human
judgments on sentences for 100 samples using a
four-point scale (the higher the better). For each
sample, we ask three annotators to rate the sen-
tence on its fluency and take the average of the
three judgments as the sentence’s fluency score.
For CEGI-BERT and CEGI-GPT2, we get mean
scores of 3.21, 3.17 respectively. Those results im-
ply that generated evidence are semantically con-
sistent with the correct evidence and can be used
as auxiliary knowledge for the reasoning step.

Table 2: Generation performance on CosmosQA.

Quality Diversity
Model BLEU(↑) PPL(↓) Self-BLEU(↓)

n=2 n=3 n=2 n=3
CEGI-BERT 40.8 32.2 153.8 30.5 14.7
CEGI-GPT2 39.8 33.5 126.7 34.2 16.6

Table 3: Generation performance on ConceptNet

Model PPL Score N/T sro N/T o
LSTM-s \ 60.83 86.25 7.83
CKBG \ 57.17 86.25 8.67
CEGI-BERT 4.89 92.19 65.32 4.12
CEGI-GPT2 4.58 93.89 61.72 3.90

https://github.com/commonsense/conceptnet5/wiki/Downloads
https://github.com/commonsense/conceptnet5/wiki/Downloads
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5.3.2 Factual Evidence Generator
Dataset ConceptNet6 is a commonsense knowl-
edgebase of the most basic things a person knows.
We use the 100K version of the training set in Con-
ceptNet, which contains 34 relation types, to train
the factual evidence generator. Tuples within the
data are in the standard < s, r, o > form.
Setup We set s and r as input for both GPT2 and
BERT and use them to generate the new object o.
To compare with our proposed GPT2 model and
BERT model, we include a LSTM model (LSTM-
s) and the BiLSTM model (CKBG) in (Saito et al.,
2018). We train the LSTM model to generate o, and
we train the CKBG model from both directions: s,
r as input and o, r as input.
Metrics Similar to the textual evidence generation
task, we use PPL to evaluate our model on relation
generation. To evaluate the quality of generated
knowledge, we also report the number of generated
positive examples that are scored by the Bilinear
AVG model (Li et al., 2016). “N/T sro” and “N/T
o” are the proportions of generated tuples and gen-
erated objects which are not in the training set.
Results As we observed from Table 3, CEGI-
GPT2 has the lowest PPL (4.58) and highest score
(93.89), which indicates the CEGI-GPT2 model
is confident and accurate at the generated rela-
tions. Even though the generated tuples on LSTM-s
and CKGB model has high “N/T sro” (both are
86.25%) and “N/T o” (7.83% and 8.67% respec-
tively), which means they generate novel relations
and expand the knowledge graph, the generated
nodes and relations may not be correct. We still
need to rely on the Score to evaluate and they
do poorly (60.83% and 57.17% respectively) in
terms of Score. Since our proposed CEGI-GPT2
and CEGI-BERT model have high Score and low
PPL, we believe that both models can produce high-
quality knowledge and still be able to extend the
size of the knowledge graph.

5.3.3 Evidence Evaluation on
CommonsenseQA

CommonsenseQA7 is a multi-choice question an-
swering dataset, which contains roughly 12K ques-
tions with one correct answer and four distractor
answers. Since the CommonsenseQA data only re-
quires different types of commonsense knowledge
to predict the correct answers, it does not contain

6https://ttic.uchicago.edu/˜kgimpel/
commonsense.html

7https://www.tau-nlp.org/commonsenseqa

paragraphs compared to CosmosQA. We use our
textual generator and factual generator to gener-
ate evidence using CommonsenseQA data and use
that to test the performance on answer prediction.
To train our proposed textual evidence generator,
we use Cos-e8 as the ground truth evidence. Cos-e
uses Amazon Mechanical Turk to provide reason-
ing explanations for the CommonsenseQA dataset.
To train our proposed factual evidence generator,
we follow the same procedure as described in sub-
section 4.1.2. To predict the answer based on both
evidence, we prepare the input as [Q [SEP] Oi

[SEP] E ] to the RoBERTa model.
Baselines KagNet (Lin et al., 2019), Cos-E (Rajani
et al., 2019), DREAM (Lv et al., 2019), RoBERTa
+ KE, RoBERTa + IR and RoBERTa + CSPT (Lv
et al., 2019). All baselines use extracted knowledge
from ConceptNet or Wikipedia. The details are in
the appendix A.2.

Table 4: Accuracy (%) of different models on Common-
senseQA development set

Model Acc
KagNet (Lin et al., 2019) 62.4
Cos-E (Rajani et al., 2019) 64.7
DREAM (Lv et al., 2019) 73.0
RoBERTa+CSPT (Lv et al., 2019) 76.2
RoBERTa+KE (Lv et al., 2019) 77.5
RoBERTa+IR (Lv et al., 2019) 78.9
RoBERTa + T 78.8
RoBERTa + F 77.6
RoBERTa + (T+F) 79.1

Result Results on CommonsenseQA datasets are
summarized in Table 4. RoBERTa + T, RoBERTa +
F and RoBERTa + (T+F) includes textual evidence,
factual evidence and both evidence together respec-
tively. We observe that our model RoBERTa + T
and RoBERTa + F can produce competitive per-
formance compared to all baselines. By utilizing
both textual knowledge and factual knowledge, our
approach outperforms RoBERTa+IR and achieves
the highest accuracy 79.1%.

5.4 Ablation Study
To evaluate the contributions of individual com-
ponents of our proposed framework, we use an
ablation study. Table 5 summarizes ablation studies
on the development set of CosmosQA from several
aspects: the influence of the generated evidence;
which evidence is better, textual or factual; the in-
fluence of the capsule network.

8https://github.com/salesforce/cos-e

https://ttic.uchicago.edu/~kgimpel/commonsense.html
https://ttic.uchicago.edu/~kgimpel/commonsense.html
https://www.tau-nlp.org/commonsenseqa
https://github.com/salesforce/cos-e
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Result We can see that injecting generated explain-
able evidence can help the model achieve a better
performance in terms of accuracy. Using generated
textual evidence and factual evidence together can
benefit more. Using capsule network significantly
improves the reasoning performance, we doubt that
is due to the hierarchical structure information from
both token-level and phrase-level are extracted by
capsule network.

Table 5: Accuracy (%) of different models on Cosmos
development set. 4 means selecting the module.

Model Text Fact Capsule Co-Att Acc
CEGI 4 4 4 4 83.8
CEGI-V1 4 4 4 83.4
CEGI-V2 4 4 4 83.2
CEGI-V3 4 4 82.6
CEGI-V4 4 4 82.2
RoBERTa-FT 79.4

6 Conclusion

In this paper, we proposed a commonsense evi-
dence generation and injection model to tackle
reading comprehension. Both textual and factual ev-
idence generators were used to enhance the model
for answering questions which requires common-
sense reasoning. After the evidences were gener-
ated, we adopted attention mechanism to find the re-
lation and match between paragraph, question, op-
tion and evidence. We used convolutional network
to capture the multi-grained features. To capture
diverse features and iteratively make a decision, we
proposed using a capsule network that dynamically
capture different features to predict the answer.
The AI2 Leaderboard of CosmosQA task demon-
strated that our method can tackle commonsense-
based reading comprehension pretty well and it
outperformed the current state-of-the-art approach
K-Adapter with a 2% increase in term of accu-
racy. Experiments regarding the evidence genera-
tors showed that the generated evidence is human-
readable and those evidences are helpful for the
reasoning task.
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A Appendix

A.1 Training Details

In CosmosQA experiments, we use pretrained
weight of RoBERTa large. We run experiments on
a 24G Titan RTX for 5 epochs, set the max se-
quence length to 256. For hyper-parameters, we
set the routing iterations of capsule network as 3,
batch size is chosen from {8, 16, 24, 32}, learning
rate is chosen from {2e-5, 1e-5, 5e-6} and warmup
proportion is chosen from {0, 0.1, 0.2, 0.5}. For
CEGI(F+L), the best performance is achieved at
batch size=24, lr=1e-5, warmup proportion=0.1
with 16-bit float precision. GPT2 with 12-layer and
BERT base model are used in evidence generation.
In textual evidence generation, we set λ in Eq. 3
to 0.5, max sequence length to 40, batch size to 32
and the learning rate to 6.25e-0.5. In factual evi-
dence generation, we set max sequence length to
15, batch size to 64, the learning rate to 1e-5. For
both generators, we train 100000 iterations with
early stop.

A.2 Baseline Methods

Cosmos Baselines
1. Co-Matching (Wang et al., 2018b) captures
the interactions between paragraph with question
and option set through attention. Commonsense-
RC (Wang et al., 2018a) performs three-way
unidirectional attention to model interactions
between paragraph, question, and option set.
DMCN (Zhang et al., 2019a) applies dual attention
between paragraph and question or option set
using BERT encoding output. Multiway (Huang
et al., 2019) uses BERT to learn the semantic
representation and uses multiway bidirectional
interaction between each pair of input paragraph,
question and option set.
2. GPT2-FT (Radford et al., 2018), BERT-FT
(Devlin et al., 2018) and RoBERTa-FT (Liu et al.,
2019) are the pretrained transformer language
models with additional fine-tuning steps on
CosmosQA.
3. Commonsense-KB (Li et al., 2019) uses logic
relations from a commonsense knowledge base
(e.g., ConceptNet9) with rule-based method to
generate multiple-choice questions as additional
training data to fine-tune the pretrained BERT
model. K-Adapter (Wang et al., 2020) infuses
commonsense knowledge into a large pre-trained

9http://conceptnet.io/

network.

CommonsenseQA Baselines
KagNet (Lin et al., 2019) uses ConceptNet as extra
knowledge and proposes a knowledge-aware graph
network and finally scores answers with graph
representations. Cos-E (Rajani et al., 2019) con-
structs human-annotated evidence for each ques-
tion and generates evidence for test data. DREAM
(Lv et al., 2019) adopts XLNet-large as the baseline
and extracts evidence from Wikipedia. RoBERTa
+ KE, RoBERTa + IR and RoBERTa + CSPT
(Lv et al., 2019) adopt RoBERTa as the baseline
and utilize the evidence from Wikipedia, search
engine and OMCS, respectively.

A.3 Case Study

To verify the generated evidence performance, we
perform case studies on textual generator and fac-
tual generator. In addition, we also show a case that
the proposed capsule network can help to select the
answer by comparing with the other options.
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Figure 3: Examples of textual evidence generator.

Case Study on Textual Generator We show
examples of automatically generated evidences by

http://conceptnet.io/
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CEGI-GPT2 and CEGI-BERT in Figure 3. We
observe that using the multi-tasking loss, CEGI-
BERT and CEGI-GPT2 generate more accurate ev-
idence. Moreover, using those generated evidences
is helpful for predicting the correct answer. In the
first example, the evidence generated by CEGI-
GPT2 “They trust me and I handle animal without
supervision.” can help select the Answer D “They
delegate tasks to me without supervision.” In the
second example, the evidence generated by CEGI-
BERT “I would not have experienced the feelings
that I had for her.” is close to the Answer D.

����2�(�*"�1�"�.�-����-���(��"��')0���)0�,�.)�'2�-#-.�,-���
")/-������1�-�.,2#(!�.)�.�&&�'��."��1),&���#��(�.�(�������-����
.)&��"#'�."�.�')-.�*&�(.��(���(#'�&�&# ��1)/&���#��1#."#(���
�������) ����-��#-�**��,#(!� ,)'�."��*&�(�.�
����"�.��-���*)--#�&��,��-)(�1"2�."��(�*"�1�"�.�-����-�	


������/-��"��')0���.)�."��1,#.�,��-�-#-.�,��-�")/-��
�������/-��')-.�*&�(.��(���(#'�&�&# ��1)/&���#��1#."#(
�������) ����-��#-�**��,#(!� ,)'�."��*&�(�.��
�������/-��"��!).��#.���� ),��

���)(��) �."����)0���")#��-�

��	��
���
������
�-#,�-�� &)1�,����������*��&�) ��-.#(!��������
��*��&�) ���/33��������
.�)��.#)(���(2�!�,��(� �*&�(�.��
��-�,)*�,.2�����/.# /&���*&�(�.���-
��),�#..#(!�-/(���*&�(�.��

.�)��.#)(��-)&�,�-2-.�'����*&�(�.������#0�-
�.#)(�� #&&�1#."�
-�(��

���
&-)��# �"��1�,��.)��&��(�."��#(.�,#),� #,-.��"��1/��"� .��
,�')0��."���)�2�%#.-��(��*/.�."�'��-#����-�."��#(.�,#),�#-�."��
"�,��-.�*�,.�) ��(2�0�"#�&��1�-"��"�0#(!�.)�,�')0��)#&���#,.-��
!,��-���(��1"�.�� ().-���))(��"��-.�**���/*�.)��)�."��-*,�2�
$)�� #,-.���0�,2."#(!�-��'���1�&&��-�"��1�-�&� .�.)�-*,�2�."��
 #(#-"���-'))."�-/, ����������!�(�-*,�2#(!�,#!".�/(��,�."��
-/(�
����"2��)�-�"�� ��&�."�.�"��'/-.�*�, ),'�."��-*,�2�$)��1"#&��
."��-/(����.-��)1(	


���)(��) �."����)0���")#��-��
����"��-/(��--#-.-�#(�1�,'#(!�."��*�#(.�-)�#.�#-���-2�.)�
�**&2�
����"��-/(�%��*-�."��*�#(.� ,)'�-*#&&#(!�)  �."����,�

� �"��-/(��,#�-�."��*�#(.�1"#�"�#-�-*,�2���)(�+/#�%&2�

��	��
���
�-/(����*��&�) ���,2�-)'�."#(!�."�.����1�.�����-*,�2��
��-�,)*�,.2��1�.����-*,�2�
.&)��.#)(��1�.�, �&&����#(.�,#),��
��-�,)*�,.2��#(-#������0�"#�&����-���),��.,�(-*),.�.#)(���
�0�"#�&�����*��&�) ��.,�0�&����0�"#�&����-���),��')�#&#.2�

Figure 4: Examples of factual evidence generator.

Case Study on Factual Generator Figure 4

shows the examples of evidences generated by the
factual generator. In the first example, from evi-
dence, we know “bee is capable of sting”, so option
C “Because he got bite before” will be the correct
answer. Some options like B “Because most plant
and animal life would die within decade of bees
disappearing from the planet” appear in the con-
text “I told him that most plant and animal life
would be die within a decade of bees disappearing
from the planet”, and thus without the evidence it
could puzzle the model to select B. In the second
example, we have the evidence “sun has capable
of drying something that be wet” and “spray has
property wet”, so it is easy to reach the correct an-
swer D “The sun dries the paint which is sprayed
on quickly”.

Case Study on Capsule Network We investi-
gate the case with and without capsule network in
the model. As shown in Figure 5, it is hard to an-
swer the question simply by reading through the
paragraph. However, after comparing with the other
options, option A will be the best answer. In this
case, the generated evidence is not useful to pre-
dict the correct answer A. But the capsule network
considering all other candidate options when an-
swering the question can help predict “She wanted
her to look at a pretty rock” as answer.
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Figure 5: Example of capsule network predict correctly
while without capsule network predict wrongly.


