ConvoKit: A Toolkit for the Analysis of Conversations

Jonathan P. Chang
Cornell University
jpc362@cornell.edu

Andrew Z. Wang
Stanford University

Caleb Chiam
Cornell University
cc982@cornell.edu

Justine Zhang
Cornell University

Liye Fu
Cornell University
liye@cs.cornell.edu

Cristian Danescu-Niculescu-Mizil
Cornell University

anwang@cs.stanford.edu Jjz727@cornell.edu cristian@cs.cornell.edu

Abstract

This paper describes the design and function-
ality of ConvoKit, an open-source toolkit for
analyzing conversations and the social inter-
actions embedded within. ConvoKit provides
an unified framework for representing and ma-
nipulating conversational data, as well as a
large and diverse collection of conversational
datasets. By providing an intuitive interface
for exploring and interacting with conversa-
tional data, this toolkit lowers the technical
barriers for the broad adoption of computa-
tional methods for conversational analysis.

1 Introduction

The NLP community has benefited greatly from
the public availability of standard toolkits, such as
NLTK (Bird et al., 2009), StanfordNLP (Qi et al.,
2018), spaCy (Honnibal and Montani, 2020), or
scikit-learn (Pedregosa et al., 2011). These toolk-
its allow researchers to focus on developing new
methods rather than on re-implementing existing
ones, and encourage reproducibility. Furthermore,
by lowering the technical entry level, they facili-
tate the export of NLP techniques to other fields.

Although much of natural language is produced
in the context of conversations, none of the exist-
ing public NLP toolkits are specifically targeted at
the analysis of conversational data. In this paper,
we introduce ConvoKit (https://convokit.cornell.
edu), a Python package that provides a unified
open-source framework for computationally an-
alyzing conversations and the social interactions
taking place within, as well as a large collection of
conversational data in a compatible format.

In designing a toolkit for analyzing conversa-
tions, we start from some basic guiding principles.
Firstly, conversations are more than mere ‘bags of
utterances’, so we must capture what connects ut-
terances into meaningful interactions. This trans-

57

lates into native support of reply and tree structure
as well as other dependencies across utterances.

Secondly, conversations are inherently social.
People often engage in multiple conversations, and
how we understand interactions is contingent on
what we know about the respective interlocutors.
Similarly, the way we understand each speaker is
contingent on their entire conversational history.
Thus, a conversational analysis toolkit must allow
for the integration of speaker information and be-
haviors across different conversations.

Thirdly, conversations occur in vastly different
contexts, from dyadic face-to-face interactions, to
discussions and debates in institutional settings,
to online group discussions, and to large-scale
threaded discussions on social media. This means
that the toolkit must offer a level of abstraction that
supports different interaction formats.

Finally, since conversational data is key to many
social science fields (e.g. political science, sociol-
ogy, social psychology), the framework should be
accessible to a broad audience: not only experi-
enced NLP researchers, but anyone with questions
about conversations who may not necessarily have
a high degree of NLP expertise.

In this paper, we describe how these principles
guided our design of ConvoKit’s framework archi-
tecture (Section 2), describe some of the analysis
methods (Section 3) and datasets (Section 4) in-
cluded in ConvoKit, and conclude with some high-
level remarks on future developments (Section 5).

2 Framework Architecture

The current state of the software and data ecosys-
tem for conversational research is fragmented:
popular conversational datasets are each dis-
tributed in different data formats, each using their
own task-specific schemas, while similarly, code
for reproducing various conversational methods

Proceedings of the SIGdial 2020 Conference, pages 57-60
Ist virtual meeting, 01-03 July 2020. (©2020 Association for Computational Linguistics

https://convokit.cornell.edu
https://convokit.cornell.edu

Corpus

Utterance [ID=U003]
Isle of Dogs.

Conversation [ID=C01]

Utterance [ID=U001]
What's your favorite movie?

\{ Speaker [ID=Alice] ‘

Utterance [ID=U002]
Apocalypse Now.

‘# Speaker [ID=Bob] ‘

Al
%

Conversation [ID=C02] /,” ,"j Speaker [ID=Charlie] ‘
Utterance [ID=U004] |/ 4
When is our exam? &

/
i

¢ !
'
i

1
1

Utterance [ID=U005]
Next Tuesday.

’ Utterance [ID=U006] ’

Oh no, that’s soon!

Figure 1: Visualization of the relationship between
the four core classes of the Corpus hierarchy.
Solid arrows denote reply-to relationships between
Utterances, while dashed arrows denote attribution
of each Utterance to its authoring Speaker.

tends to be ad-hoc with no guarantee of over-
lapping functionality or cross-compatibility. This
combination of factors poses a barrier to both re-
producibility and broader adoption.

To address these issues, a unified framework
for analyzing conversations must provide both a
standardized format for representing any conver-
sational data, and a general language for describ-
ing manipulations of said data. Furthermore, as
described in Section 1, the representation must
go beyond a mere ‘“bag-of-utterances” and na-
tively capture the structure of conversations, while
the language of manipulations must be expressive
enough to describe actions at different levels of the
conversation: individual utterances, entire conver-
sations, speakers in and across conversations, and
arbitrary combinations of the above.

These criteria directly lead to the two core
abstractions underlying ConvoKit: the Corpus,
representing a collection of one or more con-
versations, and the Transformer, representing
some action or computation that can be done to
a Corpus. To draw an analogy to language,
Corpus objects are the nouns of ConvoKit, while
Transformers are the verbs.

Representing conversational data. The main
data structure for organizing conversational data
in ConvoKit is the Corpus, which forms the top of
a hierarchy of classes representing different levels
of a conversation (Figure 1): A Corpus is a col-
lection of Conversations, each Conversation
is made up of one or more Utterances, and

58

each Utterance is attributed to exactly one
Speaker (but each Speaker can own multiple
Utterances). Conversations, Utterances and
Speakers are identified by unique IDs. Conver-
sation structure is represented by the reply_to
field of the Utterance class, which specifies the
ID of the other Utterance it replies to (i.e., its
parent node in the conversation tree). ConvoKit
leverages the relationships between Utterances,
Speakers, and Conversations to provide rich
navigation of a Corpus, such as tree traver-
sal of Utterances within a Conversation or
chronological iteration over all of a Speaker’s
Utterance history.

Custom metadata. Objects in the Corpus hierar-
chy contain some basic information that is gener-
ally useful for most operations on conversational
data, such as the text content and timestamp of
each Utterance. However, any use of ConvoKit
beyond basic analyses will likely require addi-
tional task-specific information. This is supported
by ConvoKit in the form of metadata. Each of the
four classes in the hierarchy contains a field called
meta, which is a lookup table that may be used
to store additional information about the Corpus,
Conversation, Utterance, or Speaker under
some descriptive name. In practice, metadata
ranges in complexity from speaker ages to sub-
utterance level DAMSL speech act tags.

Manipulating conversational data. ConvoKit
supports conversational analyses centered on any
level of the hierarchy; for instance, one may
wish to examine linguistic characteristics of
Utterances, characterize a Conversation in
terms of the structure of its Utterances, or track
a Speaker’s behavior across the Conversations
they have taken part in throughout their lifetime.

Such flexibility in analysis is achieved by ab-
stracting manipulations of conversational data
through the Transformer class. At a high level, a
Transformer is an object that takes in a Corpus
and returns the same Corpus with some modifica-
tions applied. In almost all cases, these modifica-
tions will take the form of changed or added meta-
data. For example, the PolitenessStrategies
Transformer annotates every Utterance with a
feature vector that counts the presence of polite-
ness features from Danescu-Niculescu-Mizil et al.
(2013), while UserConvoDiversity annotates
every Speaker with a measure of their linguistic
diversity across the whole Corpus.

The key to ConvoKit’s flexibility is that, while
a Transformer can represent any arbitrary ma-
nipulation of a Corpus and operate at any level
of abstraction, all Transformer objects share the
same syntax—that is, the Transformer class API
represents a general language for specifying ac-
tions to be taken on a Corpus. This interface is
directly modeled after the scikit-learn class of the
same name: a Transformer provides a fit()
function and a transform() function. fit() is
used to prepare/train the Transformer with any
information it needs beforehand; for example, a
Transformer that computes bag-of-words rep-
resentations of Utterances would first need to
build a vocabulary. transform() then performs
the actual modification of the Corpus.

In addition to these standard functions,
Transformers also provide a summarize()
helper function that offers a high-level tab-
ular or graphical representation of what the
Transformer has computed. For example,
PolitenessStrategies offers a summarize()
implementation that plots the average occurrence
of each politeness feature. This can be helpful for
getting a quick sense of what the Transformer
does, for simple exploratory analyses of a Corpus,
or for debugging.

A single Transformer on its own might
not make significant changes, but because
Transformers return the modified Corpus, mul-
tiple Transformers can be chained together, each
one taking advantage of the previous one’s output
to produce increasingly complex results (see Fig-
ure 2 for an example).

3 Transformers

In this section, we introduce some of the built-in
Transformers that are available for general use.
Broadly speaking, we can group the functionality
of Transformers into three categories: prepro-
cessing, feature extraction, and analysis.
Preprocessing refers to the preliminary pro-
cessing of the Corpus objects prior to some sub-
stantive analysis. For example, at the Utterance-
level, preprocessing steps can include converting
dirty web text into a cleaned ASCII representa-
tion (implemented in TextCleaner) or running a
dependency parse (implemented in TextParser).
At the Conversation-level, preprocessing steps
might include merging consecutive utterances by
the same speaker, while at the Speaker-level, they

59

1 corp = Corpus(filename=download(

2 'movie—corpus’))

3

4 # Preprocessing step

5 tc = TextCleaner()

6 tc.transform(corp)

7

8 # Constructing new metadata

9 for c in corp.iter_conversations():

10 genders = [s.metal ’gender’] for s
— in c.iter_speakers()]

11 convo.metal ‘mixed’] = /M’ in
— genders and 'F’ in genders

12

13 # Analysis step

14 fw = FightingWords()

15 fw.fit(corp,

16 classl_func=lambda utt: utt.
— get_conversation().metal ‘mixed’],

17 class2_func=lambda utt: not utt.
— get_conversation().metal ‘mixed’])

18 fw.summarize(corp)

Figure 2: Basic example code demonstrating how com-
bining different Transformers, and leveraging the
Corpus hierarchy’s rich navigation features and meta-
data functionality, can be used to study conversational
data—in this example, comparing the language used in
mixed-gender and single-gender movie dialogs.

might include merging contributions from speak-
ers with multiple user accounts.

Feature extraction refers to transformation of
conversational data, such as utterance text or con-
versational structure, into (numerical) features for
further analysis and applications. An example of
an Utterance-level feature extractor is the previ-
ously described PolitenessStrategies, while
an example of a Conversation-level feature ex-
tractor is HyperConvo, which constructs a hyper-
graph representation of the Conversation and
extracts features such as (generalized) reciprocity,
indegree and outdegree distributions, etc.

Analysis the process of combining
Utterance, Conversation and Speaker
features and metadata into a statistical or ma-
chine learning model to achieve a higher-level
understanding of the Corpus. For example,
FightingWords implements Monroe et al.
(2008)’s method for prinicpled comparison of
language used by two subsets of a Corpus;
Classifier acts as a wrapper around any
scikit-learn machine learning model and can be
used to classify Utterances, Conversations,
or Speakers based on the output of feature
extraction Transformers; and Forecaster

is

implements Chang and Danescu-Niculescu-Mizil
(2019)’s method for modeling the future trajectory
of a Conversation.

Figure 2 illustrates how Transformers belong-
ing to each category can be combined in sequence
to perform a practical conversational task: com-
paring the language used in movie dialogs contain-
ing characters of different genders to that used in
dialogs containing only one gender.'

4 Datasets

ConvoKit ships with a diverse collection of
datasets already formatted as Corpus objects and
ready for use ‘out-of-the-box’. These datasets
cover the wide range of settings conversational
data can come from, including face-to-face in-
stitutional interactions (e.g., supreme court tran-
scripts), collaborative online conversations (e.g.,
Wikipedia talk pages), threaded social media dis-
cussions (e.g., a full dump of Reddit), and even
fictional exchanges (e.g., movie dialogs).

The diversity of these datasets further demon-
strates the expressiveness of our choice of conver-
sation representation. We also provide guidelines
and code for transforming other datasets into Con-
voKit format, allowing ConvoKit’s reach to extend
beyond what data is already offered.

5 Conclusions and Future Work

In this paper, we presented ConvoKit, a toolkit that
aims to make analysis of conversations accessible
to a broad audience. It achieves this by provid-
ing intuitive and user friendly abstractions for both
representation and manipulation of conversational
data, thus promoting reproducibility and adoption.
ConvoKit is actively being developed. While
it is currently heavily centered around text anal-
ysis (with other modalities being only indirectly
supported as metadata), providing first-class sup-
port for spoken dialogs is considered as an impor-
tant line for future extension. In addition, we aim
to continue to incorporate new datasets, analysis
methods, and integrate with other parts of the NLP
software ecosystem that could benefit from Con-
voKit’s abstractions, including dialog generation
toolkits such as ParlAI (Miller et al., 2018).

'This example, together with its output and other
examples, can be found at https://convokit.cornell.edu/
documentation/examples.html.

2A complete list of datasets can be found at https:/
convokit.cornell.edu/documentation/datasets.html.

60

ConvoKit is an open-source project and we wel-
come contributions of any kind, ranging from bug-
fixes and documentation, to augmenting existing
corpora with additional useful metadata, to en-
tirely new datasets and analysis methods.>

Acknowledgments

We thank the anonymous reviewers for their
thoughtful comments and are grateful to all Con-
voKit contributors. This work was supported by
an NSF CAREER award IIS-1750615. Zhang was
supported in part by a Microsoft PhD Fellowship.

References

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Jonathan P. Chang and Cristian Danescu-Niculescu-
Mizil. 2019. Trouble on the Horizon: Forecasting
the Derailment of Online Conversations as they De-
velop. In Proceedings of EMNLP.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof,
Dan Jurafsky, Jure Leskovec, and Christopher Potts.
2013. A Computational Approach to Politeness with
Application to Social Factors. In Proceedings of
ACL.

Matthew Honnibal and Ines Montani. 2020. spaCy:
Natural Language Understanding with Bloom Em-
beddings, Convolutional Neural Networks and In-
cremental Parsing.

Alexander H. Miller, Will Feng, Adam Fisch, Jiasen
Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, and
Jason Weston. 2018. ParlAl: A Dialog Research
Software Platform. arXiv:1705.06476 [cs].

Burt L. Monroe, Michael P. Colaresi, and Kevin M.
Quinn. 2008. Fightin’ Words: Lexical Feature Se-
lection and Evaluation for Identifying the Content
of Political Conflict. Political Analysis, 16(04).

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal Dependency
Parsing from Scratch. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies.

3See contribution guidelines on the ConvoKit webpage.

https://convokit.cornell.edu/documentation/examples.html
https://convokit.cornell.edu/documentation/examples.html
https://convokit.cornell.edu/documentation/datasets.html
https://convokit.cornell.edu/documentation/datasets.html
http://arxiv.org/abs/1909.01362
http://arxiv.org/abs/1909.01362
http://arxiv.org/abs/1909.01362
http://arxiv.org/abs/1705.06476
http://arxiv.org/abs/1705.06476

