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Abstract

Task-oriented dialog systems rely on dialog
state tracking (DST) to monitor the user’s goal
during the course of an interaction. Multi-
domain and open-vocabulary settings compli-
cate the task considerably and demand scal-
able solutions. In this paper we present a
new approach to DST which makes use of var-
ious copy mechanisms to fill slots with val-
ues. Our model has no need to maintain a
list of candidate values. Instead, all values
are extracted from the dialog context on-the-
fly. A slot is filled by one of three copy mech-
anisms: (1) Span prediction may extract val-
ues directly from the user input; (2) a value
may be copied from a system inform memory
that keeps track of the system’s inform opera-
tions; (3) a value may be copied over from a
different slot that is already contained in the
dialog state to resolve coreferences within and
across domains. Our approach combines the
advantages of span-based slot filling methods
with memory methods to avoid the use of value
picklists altogether. We argue that our strat-
egy simplifies the DST task while at the same
time achieving state of the art performance on
various popular evaluation sets including Mul-
tiwoz 2.1, where we achieve a joint goal accu-
racy beyond 55%.

1 Introduction

The increasing popularity of natural language
human-computer interaction urges the development
of robust and scalable task-oriented dialog systems.
In order to fulfill a user goal, a dialogue system
must be capable of extracting meaning and intent
from the user input, and be able to keep and up-
date this information over the continuation of the
dialog (Young et al., 2010). This task is called dia-
log state tracking (DST). Because the next dialog
system action depends on the current state of the
conversation, accurate dialog state tracking (DST)
is absolutely vital.
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U: i'm looking for an ant in tk of town.

S: there are 33 restaurants [...]. would you like to narrow your search by type of food?

uU: iabout food. surprise me.

S: (fitzbillies restaurant)serves british food, [...]. would you like to hear about any others? [...].
Ui can you book it please and get me the reference number?

S: sure , what day and time would you like and how many people ?
U: i would like a table for(5/at(11:30 on tuesday][...]

S: okay, the booking was successful. [...]. is there anything else i can help you with?

U: i'm also looking for a place to stay. it needs [...] fir@@MWifijand [be] in the(SAMEArcAAS therestaurant)

Turn  Domain-slot pair Value Type Coreference

span

restaurant-pricerange expensive

restaurant-area center span

restaurant-food <dontcare> (dontcare)

restaurant-name fitzbillies informed
restaurant-people 5

11:30

span
restaurant-book_time span

restaurant-book_day tuesday span
(bool)

coreference (multiturn) | restaurant-area

hotel-internet <true>

U A W W WN R O o

hotel-area center

Figure 1: Example dialog in MultiWOZ.

DST is tasked to extract from the user input in-
formation on different concepts that are necessary
to complete the task at hand. For example, in order
to recommend a restaurant to a user, the system
needs to know their preferences in terms of price,
location, etc. These concepts are encapsulated in an
ontology, where dialogue domain (e.g., restaurant
or hotel), slot (e.g., price range or location), and
value (e.g. cheap or expensive) are defined. Solv-
ing this information extraction task is prerequisite
for forming a belief over the dialog state.

Traditional approaches to DST operate on a fixed
ontology and perform prediction over a pre-defined
set of slot-value pairs (MrkSi€ et al., 2016; Liu and
Lane, 2017; Zhong et al., 2018). Such approaches
perform very well on datasets which are defined
over fairly small ontologies. Apply these methods
to more complex datasets however reveals various
limitations (Ren et al., 2018; Nouri and Hosseini-
Asl, 2018). First, it is often difficult to obtain a
complete ontology for a task. Second, slot-value
pairs that were outside the ontology or the train-
ing data are impossible to capture during test time.
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Third, such methods at best scale linearly with the
size of the ontology. Most importantly, the idea of
fixed ontologies is not sustainable, as in real world
applications they are subject to constant change.

Human-computer interactions often need to be
defined over multiple domains at the same time,
ideally with unrestricted vocabulary. Recent ap-
proaches to multi-domain and open-vocabulary
DST extract values from the dialog context di-
rectly by predicting value spans in the input (Gao
et al., 2019; Chao and Lane, 2019; Kim et al., 2019;
Zhang et al., 2019). Span prediction is a demonstra-
bly potent method to detect relevant information
in utterances, but its major drawback is that it only
suits extractive values that are explicitly expressed
as a sequence of tokens. This is the reason why
span-based methods benefit from the support of a
picklist, i.e., a list of value candidates from which
a system can choose. Still, these methods fall short
when handling nuanced and subtle phenonema that
often occur in natural conversations, such as coref-
erence and value sharing (’I’d like a hotel in the
same area as the restaurant.”), and implicit choice
(”Any of those is ok.”).

In this work, we propose a new approach to value
independent multi-domain DST:

1. In addition to extracting values directly from
the user utterance via span prediction and
copy, our model creates and maintains two
memories on-the-fly, one for system inform
slots, and one for the previously seen slots.

The system inform memory solves the implicit
choice issue by allowing copy mechanism
from concepts mentioned by the system, e.g.,
values that are offered and recommended.

. The DS memory allows the use of values al-
ready existing in the dialogue state to infer
new values, which solves the coreference and
value sharing problems.

We call this approach TripPy, Triple copy strat-
egy DST.! Our experiments results show that our
model is able to handle out-of-vocabulary and rare
values very well during test time, demonstrating
good generalization. In a detailed analysis we take
a closer look at each of the model’s components to
study their particular roles.

'Our code will be released upon publication of this work.
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2 Related Work

Dialog state tracking has been of broad interest to
the dialog research community, which is reflected
by the existence of a series of DST challenges (Hen-
derson et al., 2014; Rastogi et al., 2019). These
challenges consistently pushed the boundaries of
DST performance. Current state-of-the-art has to
prove to work on long, diverse conversations in
multiple domains with a high slot count and prin-
cipally unrestricted vocabulary (Eric et al., 2019).
Dialogs of such complex nature are tough for tradi-
tional approaches that rely on the availability of a
candidate list due to scalability and generalization
issues (Mrksi¢ et al., 2016; Liu and Lane, 2017;
Ramadan et al., 2018; Rastogi et al., 2017).

Span-based approaches recently alleviated both
problems to some extent. Here, slot values are ex-
tracted from the input directly by predicting start
and end positions in the course of the dialog. For
instance, Xu and Hu (2018) utilizes an attention-
based recurrent network with a pointer mechanism
to extract values from the context. This extractive
approach has its limitations, since many express-
ible values are not found verbatim in the input,
but rather mentioned implicitly, or expressed by a
variety of rephrasings.

With the assistance of contextual models such
as BERT (Devlin et al., 2018), issues arising from
expressional variations can be mitigated. Recent
work has demonstrated that encoding the dialog
context with contextual representations supports
span prediction to generalize over rephrasings.
SUMBT (Lee et al., 2019) utilizes BERT to encode
slot IDs and candidate values and learns slot-value
relationships appearing in dialogs via an attention
mechanism. Dialog context is encoded with recur-
rence. BERT-DST (Chao and Lane, 2019) employs
contextual representations to encode each dialog
turn and feeds them into classification heads for
value prediction. The dialog history, however, is
not considered for slot filling. In Gao et al. (2019),
DST is rendered as a reading comprehension task
that is approached with a BERT-based dialog con-
text encoder. A slot carryover prediction model de-
termines whether previously detected values should
be kept in the DS for the current turn.

An alternative to span prediction is value genera-
tion. TRADE (Wu et al., 2019) and MA-DST (Ku-
mar et al., 2020) generate a DS from the input us-
ing a copy mechanism to combine the distributions
over a pre-defined vocabulary and the vocabulary



of current context. SOM-DST (Kim et al., 2019)
applies a similar mechanism for value generation,
but takes the previous dialog turn as well as the pre-
vious DS as input to BERT to predict the current
DS. A state operation predictor determines whether
a slot actually needs to be updated or not. The
downside of generative models is that they tend
to produce invalid values, for instance by word
repetitions or omissions.

Recently, a hybrid approach called DS-DST has
been proposed that makes use of both span-based
and picklist-based prediction for slot-filling (Zhang
et al., 2019). In contrast to generative approaches,
picklist-based and span-based methods use existing
word sequences to fill slots. DS-DST somewhat al-
leviates the limitations of span prediction by filling
a subset of slots with a picklist method instead.

Recent works seemed to reveal a trade-off be-
tween the level value independence in a model
and the DST performance. Chao and Lane (2019)
and Gao et al. (2019) solely rely on span-prediction,
but their performance lacks behind methods that at
least partially rely on a pre-defined list of candidate
values. This has impressionably been demonstrated
by Zhang et al. (2019). Their model could not
compete when relying on span-prediction entirely.
In contrast, when relying solely on their picklist
slot-filling method, they achieved the to-date best
performance on MultiWOZ 2.1. The proposed dual-
strategy approach lies favorably between these two
extremes.

To the best of our knowledge, none of the recent
approaches to complex DST tasks such as Multi-
WOZ (Budzianowski et al., 2018; Eric et al., 2019)
are value independent in the strict sense. What’s
more, they tremendously benefit from the use of
a value candidate list. Our work tackles this lim-
itation by introducing a triple copy strategy that
relies on span-prediction as well as memory mech-
anisms. In contrast to other hybrid approaches such
as Zhang et al. (2019), our memory mechanisms
create candidate lists of values on-the-fly with the
dialog context as only source of information, thus
avoiding the use of pre-defined picklists. We let
the model decide which strategy to choose for each
slot at each turn. Our approach differs from Chao
and Lane (2019) and Kim et al. (2019) in that we
consider the dialog history as context in addition
to the current turn. We also differ from approaches
like Lee et al. (2019) since we do not employ re-
currence. Like Kim et al. (2019), we use auxiliary
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inputs at each turn, but we do so as a late feature fu-
sion strategy. With our slot-value copy mechanism
to resolve coreferring value phrases, we employ a
method which is reminiscent of Gao et al. (2019)’s
slot carryover, but with the sharp distinction that
we copy values between different slots, facilitating
value sharing within and across domains.

3 TripPy: Triple Copy Strategy for DST

Our model expects the following input format
to perform dialog state tracking. Let X
{(Ur, My),...,(Ur,Mr)} be the sequence of
turns that comprise a dialog of length T'. U, is
the user utterance at turn ¢, M; is the system
utterance that preceeds the user utterance. The
task of the model is (1) to determine for every
turn whether any of the N domain-slot pairs in
S ={S1,...,Sn} is present, (2) to predict the val-
ues for each S, and (3) to track the dialog state DS}
over the course of the dialog, i.e., for t € [1,T].
We employ a triple-copy strategy to fill the slots.
The intuition is that values are either explicitly ex-
pressed by the user, that they are expressed by the
system and referred to by the user via confirmation
or rejection, or that they have been expressed earlier
in the dialog as assignment to another domain-slot
pair (coreference). Each of these cases is handled
by one of three copy mechanisms. It becomes ap-
parent that slots can not be filled by exclusively
resorting to one particular copy method. Therefore,
we employ slot gates that determine at each turn
which method to use to fill the respective slot.
Figure 2 depicts our model. We encode the
dialog context with a BERT front-end and feed-
forward the resulting contextual representations to
various classification heads to solve the sub-tasks
for DST. The aggregate sequence representation is
the input to the slot gates. The sequence of token
representations is the input to the span predictors.

3.1 Context Encoder

We use BERT (Devlin et al., 2018) as front-end to
encode at each turn ¢ the dialog context as

Ry = BERT(|CLS] @ U; @ [SEP] & M@

[SEP] & H; & [SEP)), M

where Hy = (Up—1, My—1),...,(Uy, My) is the
history of the dialog up to and excluding turn ¢. The
special token [CLS] preceeds every input sequence
to BERT, and [SEP] separates portions of the input
sequence. It is then R; = [rCS r} §Cmax]

s Ty ey Ty s
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Figure 2: Architecture of our proposed model. TripPy takes the turn and dialog history as input and outputs a DS.

where rCIS is a representation of the entire turn
including the dialog context H;. The vectors r}
to r; "™ are contextual representations for the se-
quence of input tokens (including special tokens).
Both types of representations are used for the fol-

lowing classification tasks.

3.2 Slot Gates

Our model is equipped with a slot gate for each
domain-slot pair. This ensures greatest flexibil-
ity for multi-domain DST, as there is no restric-
tion as to how many domains might be present
in a single turn. At each turn ¢, slot gates as-
sign each slot S, to one of the classes in C' =
{none, dontcare, span, inform, refer}. The first
two labels express special cases. none denotes
that the slot does not take a value in this turn and
dontcare states that any value is acceptable for this
slot. The remaining three labels each denote one
of the model’s copy mechanisms. span indicates
that a value is present in U, that can be extracted
via span prediction. inform indicates that the user
refers to a value that has been uttered by the system
in M;. Lastly, refer indicates that the user refers
to a value that is already present in D.S;.

The input to the slot gates is rELS, and the prob-
ability distribution over classes C' for domain-slot

pair Sy, at turn ¢ is p§ “ (rf1S) =

softmax(Wge . OLS 1 peatey < RS (2)

i.e., each slot gate is realized by a trainable linear
layer classification head for BERT.

Boolean slots, i.e., slots that only take binary val-
ues, are treated separately. Here, the list of possible
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classes is Choo1 = {none, dontcare, true, false}

and the slot gate probability is pz %ate(rtCLS) =

softmaX(W;Dgate . TtCLS + b?gate) e R (3

3.3 Span-based Value Prediction

For each slot s that is to be filled via span predic-
tion, a domain-slot specific span prediction layer
takes the token representations [r, . .., ;%] of
the entire dialog context for turn ¢ as input and
projects them as follows:

[z Bi) = WP rp + B € R? - (4a)
PP = softmax(ay) (4b)
pfgd = softmax(;) (40)
start] = argmax(p}'e™) (4d)
end; = argmax(pfgd). (4e)

Each span predictor is realized by a trainable linear
layer classification head for BERT, followed by
two parallel softmax layers to predict start and end
position. Note that there is no special handling for
erroneously predicting end; < startj. In practice,
the resulting span will simply be empty.

3.4 System Inform Memory for Value
Prediction

The system inform memory I; = {I},..., I}
keeps track of all slot values that were informed by
the system in dialog turn ¢. A slot in D.S; needs to
be filled by an informed value, if the user positively
refers to it, but does not express the value such that
span prediction can be used. E.g., in Figure 1 the



slot gate for domain-slot <restaurant, name>
should predict inform. The slot is filled by copy-
ing the informed value into the dialog state, i.e.,
DS} = I}, where 1 is the index of the respective
domain-slot.

3.5 DS Memory for Coreference Resolution

The more complex a dialog can be, the more likely
it is that coreferences need to be resolved. For
instance, the name of a restaurant might very well
be the destination of a taxi ride, but the restaurant
might not be referred to explicitly upon ordering
a taxi within the same conversation. Coreference
resolution is challenging due to the rich variety of
how to form referrals, as well as due to the fact
that coreferences often span multiple turns. An
example of a coreference that can be handled by
our model is found in the example in Figure 1.

The third copy mechanism utilizes the DS as
a memory to resolve coreferences. If a slot gate
predicts that the user refers to a value that has al-
ready been assigned to a different slot during the
conversation, then the probability distribution over
all possible slots that can be referenced is

refer

CLS
t,s (ry™°) =

s
refer

- rCES pg

refer

softmax( ) € RV+L

S E)

i.e., for each slot, a linear layer classification head
either predicts the slot which contains the refer-
enced value, or none for no reference.

3.6 Auxiliary Features

Some recent approaches to neural DST utilize aux-
iliary input to preserve contextual information. For
instance, SOM-DST adds the dialog state to its
single-turn input as a means to preserve context
across turns.

We already include contextual information in the
input to BERT by appending the dialog history H;.
In addition to that, we also create auxiliary features
based on the system inform memory and the DS
memory. We generate two binary vectors a*°™ ¢
{0,1}" and a® € {0,1}" that indicate whether
(1) a slot has recently been informed (based on the
system inform memory), or (2) a slot has already
been filled during the course of the dialog (based
on the DS memory). These vectors are added to the
output of BERT in a late fusion approach, and the

slot gate probabilities in Equations 2, 3 and 5 be-

~ b N A
come (1), (7£15) and i (761,

with ftCLS — ’I"tCLS D a%nform o a?s.
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3.7 Partial Masking

We partially mask the dialog history H; by replac-
ing values with BERT’s generic [UNK] token. The
masking is partial in the sense that it is applied
only to the past system utterances. For the sys-
tem utterances, the contained values are known and
their masking is straightforward. The idea behind
partially masking the history is that the model is
compelled to focus on the historical context infor-
mation rather than the sighting of specific values.
This should result in more robust representations
rCS and therefore better overall slot gate perfor-
mance.

3.8 Dialog State Update

We employ the same rule-based update mechanism
as Chao and Lane (2019) to track the dialog state
across turns. At every turn, we update a slot, if
a value has been detected which is not none. If a
slot-value is predicted as none, then the slot will
not be updated.

4 Experimental Setup
4.1 Datasets

We train and test our model on four datasets, Mul-
tiwOZ 2.1 (Eric et al., 2019), WOZ 2.0 (Wen
et al., 2016), sim-M and sim-R (Shah et al., 2018).
Among these, MultiwOZ 2.1 is by far the most
challenging dataset. It is comprised of over 10000
multi-domain dialogs defined over a fairly large
ontology. There are 5 domains (train, restaurant,
hotel, taxi, attraction) with 30 domain-slot pairs
that appear in all portions of the data.

The other datasets are single-domain and signifi-
cantly smaller. Evaluations on these mainly serve
as sanity check to show that we don’t overfit to
a particular problem. Some slots in sim-M and
sim-R show a high out-of-vocabulary rate, making
them particularly interesting for evaluating value
independent DST.

The single domain datasets come with span la-
bels. However, MultiwOZ 2.1 does not. We there-
fore generate our own span labels by matching the
ground truth value labels to their respective utter-
ances.

4.2 Evaluation

We compute the joint goal accuracy (JGA) on all
test sets for straightforward comparison with other
approaches. The joint goal accuracy defined over
a dataset is the ratio of dialog turns in that dataset



Models MultiwOZ 2.1
DST-reader 36.40%
DST-span 40.39%
SUMBT 42.40%**
TRADE 45.60%
MA-DST 51.04%
DS-DST 51.21%
SOM-DST 52.57%
DS-picklist 53.30%
TripPy 55.2940.28 %

Table 1: DST Results on MultiwOZ 2.1 in JGA (& de-
notes the standard deviation. ** MultiWOZ 2.0 result.

for which all slots have been filled with the correct
value according to the ground truth. Note that none
needs to be predicted if a slot value is not present
in a turn. In addition to JGA, we compute the
accuracy of the slot gates (joint and per-class) and
various other metrics for a more detailed analysis
of model design decisions.

We run each test three times with different seeds
and report the average numbers for more reliable
results. MultiWwOZ 2.1 is in parts labeled inconsis-
tently. For a fair evaluation, we consider a value
prediction correct, if it matches any of its valid
labels (for instance “’centre” and “center” for the
slot-value hotel-area=centre) as being correct. We
semi-automatically analyzed value label inconsis-
tencies in the training portion of the dataset in order
to identify all label variants for any given value.
During testing, these mappings are applied as is.

4.3 Training

We use the pre-trained BERT-base-uncased trans-
former (Vaswani et al., 2017) as context encoder
front-end. This model has 12 hidden layers with
768 units and 12 self-attention heads each. The
maximum input sequence length is set to 180
tokens after WordPiece tokenization (Wu et al.,
2016), except for MultiWwOZ 2.1, where we set this
parameter to 512. We compute the joint loss as

L=0.8"Lgate + 0.1 Lspan + 0.1 Ligfer. (6)

The function for all losses is joint cross entropy. As
there is no coreferencing in the evaluated single-
domain datasets, the refer loss is not computed in
those cases and the loss function is

L =08 Lgate + 0.2 - Lopan )

instead. Span predictors are presented only spans
from the user utterances U; to learn from (includ-
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Models WOZ 2.0
NBT 84.2%
BERT-DST 87.7%
GLAD 88.1%
GCE 88.5%
StateNet 88.9%
SUMBT 91.0%
TripPy 92.71+0.2 %

Table 2: DST Results on WOZ 2.0.

Models sim-M sim-R
SMD-DST 96.8%* 94.4%*
LU-DST 50.4% 87.1%
BERT-DST 80.1% 89.6%
TripPy 83.5+1.2% 90.0+0.2%

Table 3: DST Results on sim-M and sim-R. * should
be considered as oracle because the value candidates
are ground truth labels.

ing the user utterances in the history portion H; of
the input). During training we set the span predic-
tion loss to zero for all slots that are not labeled as
span. Likewise, the coreference prediction losses
are set to zero if slots are not labeled as refer. For
optimization we use Adam optimizer (Kingma and
Ba, 2014) and backpropagate through the entire
network including BERT, which constitutes a fine-
tuning of the latter. The initial learning rate is set
to 2¢~°. We conduct training with a warmup pro-
portion of 10% and let the LR decay linearly after
the warmup phase. Early stopping is employed
based on the JGA of the development set. During
training we use dropout (Srivastava et al., 2014) on
the BERT output with a rate of 30%. We do not use
slot value dropout (Xu and Sarikaya, 2014) except
for one dataset (sim-M), where performance was
greatly affected by this measure (see Section 5.1.

5 Experimental Results

Tables 1, 3 and 2 show the performance of our
model in comparison to various baselines. TripPy
achieves state-of-the-art performance on all four
evaluated datasets, with varying distance to the
runner-up. Most notably, we were able to push the
performance on MultiwOZ 2.1, the most complex
task, by another 2.0% absolute compared to the pre-
vious top scoring method, achieving 55.3% JGA.
The improvements on the much smaller datasets
WOZ 2.0, sim-M and sim-R demonstrate that the
model benefits from its design on single-domain



Model JGA
Span prediction only (entire turn) 42.63%
+ triple copy mechanism 49.23%
+ dialog history 52.58%

+ auxiliary features 54.08%

+ masking 54.29%
TripPy (full sequence width) 55.29%

Table 4: Ablation experiments for our model.
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Figure 3: Per class performance of the slot gates for
different versions of our model (ablation study).
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tasks as well. The following analysis serves a better
understanding of our model’s strengths.

5.1 Analysis

We analyse the performance of TripPy on abla-
tion experiments on MultiWOZ 2.1 (see Table 4).
Our baseline model is best compared to BERT-
DST (Chao and Lane, 2019); we only take single
turns as input, and only use span prediction to ex-
tract values from the turn. The resulting perfor-
mance is comparable to other span-based methods
such as DST-reader and DST-span and confirms
that the dialogs in MultiWOZ are too complex
to only be handled by this information extracting
mechanism alone.

Impact of the triple copy mechanism Using
our proposed triple copy mechanism pushes the
performance close to 50%, surpassing TRADE and
closing in on the leading hybrid approaches. Es-
pecially the performance of the slot gates benefits
from this change (see Figure 3). When looking at
the F1 score for the individual classes, one can see
that the span class benefits from the distinction. It
is important to point out that none of the corefer-
ences that our model handles can be resolved by
span-prediction alone. This means that otherwise
guaranteed misses can now be avoided and corefer-
ences can be resolved by copying values between
slots. What’s more, using the dialog state memory
to resolve coreferences helps value detection across
multiple turns, as a value that has been referred to
in the current turn might have been assigned to
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Figure 4: Performance of TripPy on slots with high
OOV rate. ALL denotes the average of all slots of the
respective dataset.

another slot multiple turns before.

Impact of the dialog history We found that us-
ing the dialog history as additional context informa-
tion is critical to a good performance, as it reduces
contextual ambiguity. This is clearly reflected in
the improved performance of the slot gates (see
Figure 3, which has two positive effects. First, the
presence and type of values is recognized correctly
more often. Especially the special value dontcare,
and boolean slots (taking values true and false)
benefit from the additional context. This is only
logical, since they are predicted by the slot gate
using the representation vector of the [CLS] to-
ken. Second, values are assigned to the correct slot
more often than without the additional contextual
information. With the additional dialog history, we
outperform DS-DST and match SOM-DST, which
set the previous state-of-the-art.

Impact of the auxiliary features SOM-DST
uses single turns as input, but preserves additional
contextual information throughout the dialog by
using the dialog state as auxiliary input. By adding
our memory based auxiliary features in a late fusion
approach, we surpass SOM-DST, and ultimately
DS-picklist, which performs slot-filling with the
knowledge of the full ontology. Even though our
features carry less information, that is, only the
identities of the informed slots — tracked by the
system inform memory — and the identities of the
previously seen slots — tracked by the DS memory
—, we see substantial improvement using them. Ob-
viously, more information about the progress of the
dialog helps the slot gates and the referral gates in
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Figure 5: Recall of values depending on the amount of
samples seen during training. 0 seen samples means
the value is OOV during test time.

their classification tasks.

Impact of partial masking We found that mask-
ing the informed values in past system utterances
does not give a clear benefit, but it also does not
harm performance of the slot gates. While the
inform cases are detected more accurately, some
other cases suffer from the loss of information in
the input. Overall, there is a minor overall im-
provement observable. We report the numbers for
MultiWOZ in Table 4 and Figure 3, but would like
to note that we have seen the same trend on all
other datasets as well.

Impact of the context width Our best model uti-
lizes the full width of BERT (512 tokens). This is
a clear advantage for longer dialogs. Maximal con-
text width is not a decisive factor for the single-
domain datasets, since their dialogs tend to be
shorter. As expected, we have not seen any change
in performance on these. For MultiWQOZ, we gain
1% absolute by maximizing the history length to
preserve as much of the dialog history as possible,
achieving 55.3% JGA.

5.2 Generalization Study

It is important that a DST model generalizes well
to previously unseen values. We looked at the per-
formance of our model on slots with exceptionally
high out-of-vocabulary rates, of which we identi-
fied 8 across the evaluated datasets. Figure 4 plots
performance measures for these slots and compares
them to the average performance for all slots in the
respective datasets. Generally, the slots that expect
named entities as values show the lowest accuracy.
However, the below-average performance of these
slots does not seem to be caused by a particularly
high OOV rate. Even at 100%, the movie slot of
sim-M still performs comparably well. Other slots
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== Original Test Set Values replaced with OOVs
hotel-type
restaurant-book_timeggy

restaurant-book_day

restaurant-book_people

train-leaveAt
otel-area

taxi-departure

taxi-leaveAt attraction-type

hotel-book_stay hotel-parking

\

\
\

hotel-book_day restaurant-area

taxi-arriveBy hotel-pricerange

otel-book_people

\
train-day
train-destination
train-departure

train-book_people

hotel-stars
restaurant-food
T h

restaurant-name
train-arriveBy

taxi-destination

attraction-name

restaurant-pricerange

attractlon area
hotel-n:
otel-internet

Figure 6: Per-slot accuracy of TripPy on the original
test set and the OOV test set. Underlined slot names
indicate slots with at least one OOV value.

with relatively high OOV rate still perform close to
or better than the average.

Figure 5 plots the recall of values depending on
the number of samples seen during training. To
our surprise, it does not seem to matter whether a
particular value has never been seen during training
in order to be detected correctly. OOV values are
detected just as well as generally less common
values. Our observations however indicate that the
model benefits tremendously by seeing a certain
minimal amount of training samples for each value,
which is somewhere around 50. In other words, if
such amounts of data are available, then the model
is able to effectively utilize them. In the same
Figure we compare TripPy to the span prediction
baseline. The latter clearly struggles with OOVs
and rare values and generally seems to require more
training samples to achieve a good recall. The
higher recall on OOV values is likely caused by the
fact that many unseen values are of the category
time of day, which mostly follows a strict format
and is therefore easier to spot. Overall, TripPy
clearly generalizes better over sample counts.

To test the limits of our model’s generalization
capacities, we manually replaced most of the val-
ues in the MultiWOZ test set by (fictional but still
meaningful) OOV values. Of the over 1000 unique
slot-value pairs appearing in the modified test set,
about 84% are OOV after the replacement. Fig-
ure 6 compares the per-slot accuracy of our model
on the original test set and the OOV test set. Un-
derlined slot names indicate slots with at least one
OOV value. Their average OOV rate is 90%. Sur-
prisingly, most of these slots maintain their high



accuracy and only few suffer from the high OOV
count. Mainly it is one particular domain, train,
which suffers above-average performance drops.
However, the remainder of the slots maintain their
performance. This demonstrates that our model is
well equipped to handle OOV values, regardless of
the type (e.g., named entity, time of day).

6 Conclusion

We have demonstrated that our approach can han-
dle challenging DST scenarios. Having to detect
unseen values does not considerably impair our
model’s general performance. The information
extraction capabilities of our proposed model are
rooted in the memory-based copy mechanisms and
perform well even in extreme cases as discussed in
Section 5.2. The copy mechanisms are not limited
by a predefined vocabulary, since the memories
themselves are value agnostic.

To further improve the DST capabilities of
TripPy, we hope to introduce slot independence
as at present its tracking abilities are limited to
slots that are predefined in the ontology. For that,
We would like to expand our approach towards the
schema-guided paradigm for dialog modeling. We
also would like to employ a more sophisticated up-
date strategy, for example by adding the option to
partially forget. There already exists an intriguing
set of works focusing on these issues and we hope
to incorporate and expand upon it in the future.
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