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Abstract

Most prior work on task-oriented dialogue sys-
tems are restricted to a limited coverage of do-
main APIs, while users oftentimes have do-
main related requests that are not covered by
the APIs. In this paper, we propose to ex-
pand coverage of task-oriented dialogue sys-
tems by incorporating external unstructured
knowledge sources. We define three sub-tasks:
knowledge-seeking turn detection, knowledge
selection, and knowledge-grounded response
generation, which can be modeled individually
or jointly. We introduce an augmented version
of MultiWOZ 2.1, which includes new out-of-
API-coverage turns and responses grounded
on external knowledge sources. We present
baselines for each sub-task using both conven-
tional and neural approaches. Our experimen-
tal results demonstrate the need for further re-
search in this direction to enable more infor-
mative conversational systems.

1 Introduction

Traditionally, task-oriented dialogue systems have
focused on providing information and performing
actions that can be handled only by given databases
or APIs. However, in addition to task-focused re-
quests, users also have needs that go beyond what
is provided by the backend resources. For exam-
ple, while most virtual assistants can help users
book a hotel, a restaurant or movie tickets, they
fall short of answering potential follow-up ques-
tions users may have, such as: where to park ve-
hicles; whether they are allowed to bring pets or
children to the reserved place; or what the cancella-
tion policy is. No API/DB entry is usually available
to handle such requests. On the other hand, rele-
vant domain knowledge is already available on web
pages in the form of descriptions, FAQs and cus-
tomer reviews for many of these out-of-coverage
scenarios. Since current dialogue systems don’t

incorporate these external knowledge sources into
task-oriented conversational modeling, users need
to visit the websites by themselves to find out any
additional information beyond API/DB coverage,
making conversational interactions inefficient.

In this work, we propose a new conversational
modeling task towards frictionless task-oriented
scenarios, where the flow of the conversation does
not break when users have requests that are out
of the coverage of APIs/DB but potentially are
already available in external knowledge sources.
Inspired by recent studies on knowledge-grounded
conversational modeling (Zhou et al., 2018; Dinan
et al., 2018; Galley et al., 2019; Gopalakrishnan
et al., 2019), our proposed task aims to develop
end-to-end dialogue systems to understand rele-
vant domain knowledge, and generate system re-
sponses with the selected knowledge. Different
from previous work on social conversations (Ritter
et al., 2011; Vinyals and Le, 2015; Serban et al.,
2017), this task addresses task-oriented conversa-
tions grounded on fine-grained domain-level or
entity-level knowledge sources related to given dia-
logue contexts.

Figure 1 shows an example conversation with
unstructured knowledge access. The user utter-
ances at turns t = {3, 7} and t = {11, 15} request
the policy details about bringing pets and making
payments, respectively, which are out of the cov-
erage of the structured domain APIs. On the other
hand, the relevant knowledge contents can be found
from the external sources as in the rightmost col-
umn which includes the QA snippets from the FAQ
lists for each corresponding entity within domains
such as train, hotel, or restaurant. With access to
these unstructured external knowledge sources, the
agent managed to continue the conversation with
no friction by responding adequately at the turns
t = {4, 8, 12, 16}.
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t Speaker Utterance (ut) Relevant Knowledge Snippets from FAQs
1 User I need a train from King’s Lynn to Cambridge arriving by 17:45 on Sunday.
2 Agent I have train TR6003 leaving cambridge at 5:11 and arriving at 5:58 on sunday
3 User I also need to bring my dog. Do they allow pets? Q: Can I bring my pets to trains?

A: We happily welcome dogs and cats up to 20 pounds.4 Agent Yes, you can travel with your dog up to 20 pounds.
5 User That sounds great. I also need help finding a place to stay in the South.
6 Agent I have 2 options available. The Lensfield Hotel and Gonville Hotel.
7 User Do either of them allow to stay with my dog? Q1: Can I bring my dog to Gonville Hotel?

A1: Pets are permitted. But charges may be applicable.8 Agent You could stay with your dog at Gonville with a fee.
Would you like me to book it? Q2: Can I bring my dog?

A2: Pets are not allowed at the Lensfield Hotel.
9 User Maybe later. How about a place to eat nearby? Chinese food would be great.

10 Agent The peking restaurant is a nice place. Do you need reservations?
11 User Before that, could you confirm that this restaurant accepts AMEX? Q: What type of payments are accepted?

A: Peking Restaurant accepts cash only.12 Agent Unfortunately, the Peking restaurant accepts cash only. Would it work?
13 User Okay. Can you book a table for 4 at 18:30 on Monday, please?
14 Agent Booking was successful. Do you have any other question?
15 User What about the hotel? Can I use my credit card there? Q: What credit cards are accepted by Gonville Hotel?

A: You can use AMEX, Visa and Mastercard.16 Agent Yes, Gonville Hotel accepts all major credit cards including AMEX.

Figure 1: Examples of task-oriented conversations with unstructured knowledge access
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Figure 2: A baseline architecture for task-oriented conversational modeling grounded on unstructured knowledge

2 Related Work

Task-oriented dialogue systems aim to enable users
to complete tasks by interacting with an automated
agent in natural language (Young et al., 2013).
These systems typically convert user utterances to
a semantic representation (such as domain, intent,
and slots (Tur and De Mori, 2011)) based on what is
used by the backend resources (such as APIs) that
accomplish the tasks. At each turn, the dialogue
system decides the next action to take based on
the estimated dialogue state as well as any results
or responses from the backend resources (Levin
et al., 2000; Singh et al., 2002; Williams and Young,
2007). The next action, which is typically in the
form of a semantic frame formed of dialogue acts,
arguments and values, is converted to a natural
language response to the user by natural language
generation (Perera and Nand, 2017).

On the other hand, social conversational systems
typically follow an end-to-end approach, and aim
to generate target responses based on the previous
conversation context (Ritter et al., 2011; Vinyals
and Le, 2015; Serban et al., 2017). Ghazvininejad

et al. (2018) proposed an extension to these models
that grounds the responses on unstructured, textual
knowledge, by using end-to-end memory networks
where an attention over the knowledge relevant to
the conversation context is estimated. Along sim-
ilar lines, Liu et al. (2018) used pattern matching,
named entity recognition and linking to find facts
relevant to the current dialogue and other related
entities from a knowledge base. Zhou et al. (2018)
proposed both static and dynamic graph attention
mechanisms for knowledge selection and response
generation, respectively, using knowledge graphs.
More recently, Dinan et al. (2018) and Gopalakr-
ishnan et al. (2019) both have publicly released
large conversational data sets, where knowledge
sentences related to each conversation turn are an-
notated. Our proposed task, data, and baseline
models in this work differ from these studies in the
following aspects: we target task-oriented conver-
sations with more clear goals and explicit dialogue
states than social conversations; and we aim to in-
corporate task-specific domain knowledge instead
of commonsense knowledge.
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The other line of related work is machine read-
ing comprehension which aims to answer questions
given unstructured text (Richardson et al., 2013;
Hermann et al., 2015; Rajpurkar et al., 2016) and
has later been extended to conversational question
answering (Choi et al., 2018; Reddy et al., 2019).
In our work, the document required to generate a
response needs to be identified according to the con-
versation context. The responses are also different
in that, rather than plain answers to factual ques-
tions, we aim to form factually accurate responses
that seamlessly blend into the conversation.

3 Problem Definition

We define an unstructured knowledge-grounded
task-oriented conversational modeling task based
on a simple baseline architecture (Figure 2) which
decouples turns that could be handled by ex-
isting task-oriented conversational models with
no extra knowledge and turns that require exter-
nal knowledge resources. In this work, we as-
sume that a conventional API-based system al-
ready exists and focus on the new knowledge ac-
cess branch which takes a dialogue context Ut =
{ut−w+1, · · · , ut−1, ut} and knowledge snippets
K = {k1, · · · , kn}, where ui is the i-th utterance
in a given dialogue, t is the time-step of the current
user utterance to be processed, w is the dialogue
context window size.

Our proposed task aims to generate a context-
appropriate system response ũt+1 grounded on
a set of relevant knowledge snippets K̃ ⊂ K.
The remainder of this section presents the de-
tailed formulations of the following three sub-tasks:

‘Knowledge-seeking Turn Detection’, ‘Knowledge
Selection’, and ‘Knowledge-grounded Response
Generation’.

3.1 Knowledge-seeking Turn Detection

For each given turn at t, a system first needs to de-
cide whether to continue an existing API-based sce-
nario or trigger the knowledge access branch. We
call this task Knowledge-seeking Turn Detection.
This problem is defined as a binary classification
task formulated as follows:

f1(Ut|K) =

{
1 if ∃k ∈ K satisfies ut,
0 otherwise,

which we assume that every turn can be handled
by either branch in this work. For the examples in
Figure 1, f1(Ut|K) = 1 for the knowledge-seeking

turns at t = {3, 7, 11, 15}, while f1(Ut|K) = 0 for
the other user turns at t = {1, 5, 9, 13}.

3.2 Knowledge Selection
Once a given user turn at t is determined as a
knowledge-seeking turn by f1(Ut|K), it moves for-
ward with Knowledge Selection to sort out the rele-
vant knowledge snippets. This task takes each pair
of Ut and ki ∈ K and predicts whether they are
relevant or not as follows:

f2(Ut, ki) =

{
1 if ki ∈ K is relevant to Ut,
0 otherwise.

Different from other information retrieval prob-
lems taking only a short single query, this knowl-
edge selection task must be highly aware of the
dialogue context. For example, u3 and u7 them-
selves in Figure 1 share the same question type with
similar surface form, but the relevant knowledge
snippets would vary depending on their dialogue
states across different domains. Even within a sin-
gle domain, fine-grained dialogue context needs to
be taken into account to select proper knowledge
snippets corresponding to a specific entity, for ex-
ample, ‘Peking Restaurant’ and ‘Gonville Hotel’
for u11 and u15 against any other restaurants and
hotels, respectively.

Since more than one knowledge snippet can be
relevant to a single turn, as for u7 in Figure 1, we
form a task output K̃ including all the positive
knowledge snippets from f2(Ut, k), as follows:

K̃t = {ki|ki ∈ K ∧ f2(Ut, ki) = 1} ⊂ K.

3.3 Knowledge-grounded Generation
Finally, a system response ũt+1 is generated based
on both dialogue context Ut and the selected knowl-
edge snippets K̃t, as follows:

f3(Ut, K̃t) = ũt+1.

Each generated response is supposed to provide the
user with the requested information grounded on
the properly selected knowledge sources. In addi-
tion, the response should be naturally connected
to the previous turns. The knowledge-grounded
responses in Figure 1 focus not only on delivery
of the information by knowledge access, but also
maintain natural conversation. For example, the re-
sponses at t = {4, 8} paraphrase written sentences
into a colloquial style, the responses at t = {4, 16}
acknowledge before giving a statements, the re-
sponses at t = {8, 12} ask a follow-up question to
the user.



281

(a) Positions for augmentation (b) User utterances (c) System responses

Figure 3: Crowdsourcing user interfaces for MultiWOZ data augmentation with knowledge access turns

4 Data

To address the proposed research problems, we
collected an augmented version of MultiWOZ
2.1 (Budzianowski et al., 2018; Eric et al., 2019)
with out-of-API-coverage turns grounded on ex-
ternal knowledge sources beyond the original
database entries. This was incrementally done by
the following three crowdsourcing tasks.

First, crowd workers were given a dialogue sam-
pled from the original MultiWOZ 2.1 conversa-
tions and asked to indicate an appropriate position
to insert a new turn about a selected subject from
external knowledge categories (Figure 3a). This
task aims to collect user behaviors about when to
ask a knowledge-seeking question for a given sub-
ject. It corresponds to the knowledge-seeking turn
detection sub-task in Section 3.1.

Then, they were asked to write down a new user
utterance at each selected position in the first task
to discuss about a given corresponding subject (Fig-
ure 3b), which is for both knowledge-seeking turn
detection (Section 3.1) and knowledge selection
(Section 3.2) sub-tasks. In order to collect various
expressions, a single task with the same dialogue
context and knowledge category was assigned to
multiple crowd workers in parallel.

Finally, we collected the agent’s response to each
question collected in the previous step. In this task
(Figure 3c), crowd workers were given external
knowledge sources for each category and asked
to convert them into a system response which is
more colloquial and coherent to both the question
and dialogue context. This task aims at knowledge-
grounded response generation (Section 3.3).

Our proposed pipeline for data collection has the
following advantages over Wizard-of-Oz (WoZ)
approaches. First, it is more efficient and scalable,
since every task can be done by a single crowd
worker independently from others, while WoZ re-
quires to pair up two crowd workers in real time.

Split # dialogues # augmented turns # utterances
Train 8,438 7,169 127,894
Valid 1,000 923 16,594
Test 1,000 980 16,704
Total 10,438 9,072 161,192

Table 1: Statistics of the data divided into training, val-
idation, and test purposes. The total number of utter-
ances includes both the original and augmented turns.

Domain-level Entity-level
Domain # snippets # entities # snippets
Hotel 24 27 477
Restaurant 8 81 401
Train 20 - -
Taxi 8 - -
Total 60 108 878

Table 2: Statistics of domain-/entity-level knowledge
snippets collected from FAQ webpages

This aspect enables us to have more control in the
whole process compared to the end-to-end data
collection entirely by crowd workers from scratch.
Furthermore, the intermediate outcomes from each
phase can be utilized to build conversational mod-
els with no additional annotation.

Table 1 shows the statistics of the collected data
sets. A total of 9,072 utterance pairs are newly
collected in addition to the original MultiWOZ
dialogues, each of which is linked to corresponding
knowledge snippets among 938 question-answer
pairs (Table 2) collected from the FAQ webpages
about the domains and the entities in MultiWOZ
databases. Figure 4 shows the length distribution
of the augmented utterances. Similar to the original
MultiWOZ (Budzianowski et al., 2018), the agent
responses are longer than the user utterances, which
have 12.45 and 9.85 tokens on average spoken by
agents and users, respectively. Figure 5 presents the
distribution of trigram prefixes of the augmented
user utterances with various types of follow-up
questions that go beyond the coverage of domain
APIs.
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5 Methods

In this section, we present baseline methods for
the problems defined in Section 3. Specifically, we
introduce both a non-machine learning approach
and a neural baseline model for each sub-task.

5.1 Knowledge-seeking Turn Detection
For the knowledge-seeking turn detection, we com-
pare two baselines with unsupervised anomaly de-
tection and supervised classification methods.

5.1.1 Unsupervised Anomaly Detection
In the first baseline, we consider the task as an
anomaly detection problem that aims to identify the
turns that are out of the coverage of conventional
API-based requests. Given the assumption that
there is no knowledge-seeking turn available in
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Figure 6: Retrieval baseline for knowledge selection

most task-oriented dialogue data, we applied an
unsupervised anomaly detection algorithm, Local
Outlier Factor (LOF) (Breunig et al., 2000). The
algorithm compares the local densities between a
given input instance and its nearest neighbors. If
the input has a significantly lower density than the
neighbors, it is considered an anomaly.

We built a knowledge-seeking turn detector with
the LOF implementation in PyOD (Zhao et al.,
2019) with its default configurations. The system
includes all the user utterances in the original Mul-
tiWOZ 2.1 training set. Every utterance in both
training and test sets was encoded by the uncased
pre-trained BERT (Devlin et al., 2019) model.

5.1.2 Neural Utterance Classification
If training data is available for the knowledge-
seeking turn detection, the most straightforward
solution will be training a binary classifier in a su-
pervised manner. In this experiment, we fine-tuned
the uncased pre-trained BERT (Devlin et al., 2019)
model on the training data in Section 4. The model
takes each single user utterance ut as an input and
generates the utterance representation as the final
layer output for [CLS] which is a special token
in the beginning of the input sequence. We added
a single layer feedforward network on top of the
utterance embeddings, which was trained with bi-
nary cross-entropy loss for three epochs. We used
a mini-batch size of 128 with truncated utterances
up to 256 tokens.

5.2 Knowledge Selection

In our experiments, we consider two variants of
the knowledge selector: unsupervised knowledge-
retrieval baselines and supervised neural Trans-
former architectures.

5.2.1 Unsupervised Knowledge Retrieval
First, we propose the unsupervised knowledge se-
lection baselines using information retrieval (IR)
algorithms (Figure 6). Let us denote an encoder
function M mapping the concatenation of all the



283

· · ·· · ·𝐸[#$%] 𝐸' 𝐸( 𝐸[%)*] 𝐸'+ 𝐸,+

· · ·· · ·[𝐶𝐿𝑆] 𝑊' 𝑊( [𝑆𝐸𝑃] 𝑊'
+ 𝑊,

+

· · ·· · ·𝐶 𝑇' 𝑇( 𝑇[%)*] 𝑇'+ 𝑇,+

Dialogue Context (𝑈4) Knowledge Snippet (𝑘6)

Relevance
𝑓8(𝑈4, 𝑘6)

Transformer

Figure 7: BERT-based knowledge selection baseline

sentences in a query or a document to a fixed-
dimensional weight vector. In this work, we take
the dialogue context Ut as a query and each knowl-
edge snippet ki as a candidate document. When
scoring entity-level knowledge, we also add the
name of the entity to each document ki being
scored as this helps differentiate among potentially
ambiguous knowledge contents that may be appli-
cable to multiple entities.

Our IR model then computes the following co-
sine similarity score per knowledge snippet:

S (Ut, ki) = cos (M(Ut),M(ki)) ,

where we finally take the most relevant document
as a selected knowledge in the following fashion:

f2(Ut, ki) =

{
1 if i = argmaxj S (Ut, kj),

0 otherwise.

We use two types of standard IR baselines: a TF-
IDF (Manning et al., 2008) and a BM25 (Robert-
son and Zaragoza, 2009) system. We also con-
sider another IR baseline that employs an uncased
pretrained BERT model as a static utterance en-
coder. In this baseline, we encode Ut and each ki
separately and then compute the cosine similarity
between the pooled utterance outputs.

5.2.2 Neural Relevance Classification
We also employ a BERT-based (Devlin et al., 2019)
neural model as a baseline knowledge selection
system. In particular, we train a binary classifica-
tion model (Figure 7) over a pair of encoded texts
as is done in prior Transformer sentence relation-
ship models (Nogueira and Cho, 2019). The model
takes the concatenation of the utterances in Ut and
the sentences in ki as an input instance. We use
the final layer output C at the same position to the
[CLS] token as input to a single layer feedforward

network to obtain a probability si that the ki is
relevant to the given dialogue context Ut.

We finetune a pretrained BERT model using a
binary cross-entropy loss as follows:

L = −
∑
i∈Ipos

log(si)−
∑

i∈Ineg

log(1− si),

where Ipos refers to the set of knowledges that are
relevant for the given dialogue context and Ineg
refers to those that are not.

During training of the knowledge classifier, we
experimented with sampling methods of negative
knowledge candidates to be paired with a given
dialogue context. For dialogues annotated with
domain-level knowledge, we chose negative can-
didates by sampling other documents in the same
domain as the annotation. For entity-level knowl-
edge dialogues, we chose negative candidates by
sampling other documents from the same entity as
the provided annotation. We built models in which
the number of negative candidates for each positive
example was varied from 1 to 13 in increments
of 4 and found the best-performing model used 5
negative candidates for each positive candidate.

5.3 Knowledge-grounded Generation
In this section, we propose both extractive and gen-
erative approaches for the knowledge-grounded re-
sponse generation task.

5.3.1 Answer Extraction
The simplest method for knowledge-grounded re-
sponse generation is to output a part of the selected
knowledge snippets. In this experiment, we devel-
oped an answer extraction baseline with the follow-
ing heuristics:

• If multiple knowledge snippets are related to
a given turn, randomly pick one of them. Oth-
erwise, a sole snippet is taken as the source
for answer extraction.

• If the target snippet includes multiple para-
graphs, extract only the first paragraph as a
system response. Otherwise, the whole para-
graph is considered as the output.

5.3.2 Neural Response Generation
Given the tremendous interest and success in lever-
aging large pre-trained language models for down-
stream NLP tasks in the community, our neural
baseline leverages the Generative Pre-trained Trans-
former (GPT-2) model (Radford et al., 2019). We
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Method Acc P R F
Anomaly Detection 0.852 0.393 0.581 0.469
Classification 0.998 0.989 0.994 0.991

Table 3: Comparisons of the knowledge-seeking turn
detection performances between two baselines

fine-tuned the GPT-2 small model with a standard
language modeling objective on our dataset, using
both the knowledge-augmented and regular system
turns as target sequences. To show the influence of
knowledge, we compared two variants of models
with different inputs, as follows:

• GPT-2 w/o knowledge: no knowledge was
used during fine-tuning.

• GPT-2 w/ knowledge: the ground-truth knowl-
edge snippets were concatenated to each input
dialog context (Figure 8) for fine-tuning.

We used the transformers library (Wolf et al.,
2019a) 1 to fine-tune the models for a fixed number
of 3 epochs with a truncation window of 256 tokens
for both dialog context Ut and knowledge snippet
ki. We used a train batch size of 2, performed
gradient accumulation every 8 steps and gradient
clipping with a max norm of 1.0, used the Adam
optimizer and linearly decayed the learning rate
from 6.25e-5 to 0 during fine-tuning.

We added special tokens for both speakers user
and agent to our vocabulary, initialized their pa-
rameters randomly and learned them during fine-
tuning. We enriched the corresponding turns in the
input with speaker embeddings at a token-level by
identifying their token types, exactly as described
in (Wolf et al., 2019b). We used top-k, top-p
nucleus sampling with temperature T (Holtzman
et al., 2019) for decoding, where k = 0, p = 0.9
and T = 0.7. We also set a maximum decode
length of 40 tokens.

1https://huggingface.co/transformers/

Method MRR@5 R@1 R@5
Retrieval (TF-IDF) 0.618 0.511 0.807
Retrieval (BM25) 0.611 0.498 0.827
Retrieval (BERT) 0.226 0.128 0.428
Classification (BERT) 0.891 0.834 0.976

Table 4: Comparisons of the knowledge selection per-
formances by retrieval and classification methods

6 Evaluation

6.1 Knowledge-seeking Turn Detection

First, we evaluated the knowledge-seeking turn de-
tection performances of unsupervised anomaly de-
tection (Section 5.1.1) and supervised neural classi-
fication (Section 5.2.2) methods. Both models were
built on all the user utterances in the training set
and evaluated on the test set user turns in accuracy,
precision, recall, and F-measure.

Table 3 shows that the unsupervised baseline has
a limitation in distinguishing between API-based
and knowledge-seeking turns, especially with many
false positives. On the other hand, the neural clas-
sifier achieved almost perfect performance in all
the metrics. Nevertheless, this utterance classifier
may work well when restricted only to this data set
or similar, due to lack of knowledge or API details
incorporated into the model. There is much room
for improvement in making the model more gener-
alizable to unseen domains or knowledge sources.

6.2 Knowledge Selection

Knowledge selection was evaluated using a num-
ber of standard IR metrics including recall (R@1
and R@5), and mean reciprocal rank (MRR@5).
For domain-knowledge dialogues, our total candi-
date set included all domain knowledges for the
annotated domain, and for entity-knowledge dia-
logues our total candidate set included all entity
knowledges for the annotated entity.

Table 4 shows that our bag-of-words IR base-
lines (Section 5.2.1) outperformed the static BERT
encoder across all three metrics. However, the
neural classifier model (Section 5.2.2) significantly
outperformed the IR baselines, demonstrating the
efficacy of downstream fine-tuning of large pre-
trained neural representations. That being said,
there is still a substantial performance gap in the
R@1 and MRR@5 metrics, leaving room for fur-
ther research into knowledge selection on this data.
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Method PPL Unigram F1 Div. (n = 1) Div. (n = 2) BLEU-4 METEOR ROUGE-L
Answer Extraction - 0.3215 0.0356 0.0892 0.0358 0.2543 0.1769
GPT-2 w/o knowledge 5.0906 0.2620 0.0509 0.1589 0.0559 0.2202 0.1979
GPT-2 with knowledge 4.1723 0.3175 0.0509 0.1559 0.0840 0.2796 0.2403
Human - - 0.0806 0.3055 - - -

Table 5: Automated evaluation results on knowledge-grounded response generation

Appropriateness Accuracy
Method Baseline %W %L %Tie %W %L %Tie
Answer Extraction Human 34.39 59.49 6.12 - - -
GPT-2 w/o knowledge Human - - - 4.59 27.76 67.65
GPT-2 with knowledge Human 36.02 59.49 4.49 5.31 22.96 71.74
GPT-2 with knowledge Answer Extraction 56.33 31.02 12.65 - - -
GPT-2 with knowledge GPT-2 w/o knowledge - - - 22.55 17.04 60.41

Table 6: Human evaluation results on knowledge-grounded response generation

6.3 Knowledge-grounded Generation
Responses by answer extraction (Section 5.3.1) and
neural generation models (Section 5.3.2) were first
evaluated using the following automated metrics:
perplexity, unigram F1, n-gram diversity, BLEU-
4, METEOR, and ROUGE-L. The evaluation was
done only on the augmented turns with the ground-
truth knowledge, in order to characterize the mod-
els’ ability to handle the external knowledge sce-
nario. Table 5 shows that our generation models
achieved better scores than the extractive baseline
on most metrics. Especially, the GPT-2 model with
knowledge outperformed both the answer extrac-
tion baseline and the other GPT-2 variant with no
knowledge in BLEU-4, METEOR, and ROUGE-
L, which indicates that our proposed neural model
generates more human-like responses than the ex-
tractive baseline.

In addition, we also performed human evalua-
tions of the generated responses with the following
two crowdsourcing tasks:

• Appropriateness: given a dialogue context
and a pair of responses generated by two
methods, crowdworkers were asked to select
a more appropriate response to the context.

• Accuracy: given a knowledge snippet and a
pair of responses generated by two methods,
crowdworkers were asked to select a more
accurate response to the knowledge.

In both tasks, we presented each instance to three
crowdworkers; asked them to choose either re-
sponse or ‘not sure’ for the cases that are equally
good or bad; and took the majority as the final
label for the instance. Table 6 shows that our GPT-
2 models generated more appropriate responses

than the answer extraction baseline. Comparing be-
tween two GPT-2 variants, the model with knowl-
edge provided more accurate information based on
explicitly given knowledge than the one without
knowledge. However, this accuracy gap between
two models is not very big, which depicts the need
to add more diversity in knowledge content which
cannot be handled just by memorizing facts from
the training data.

7 Conclusions

This paper proposed a new task-oriented conver-
sational modeling problem grounded on unstruc-
tured domain knowledge, which aims to handle
out-of-API coverage user requests. To support re-
search on our proposed tasks, we introduced an
augmented version of MultiWOZ 2.1 dialogues
with additional knowledge-seeking turns collected
given external knowledge sources. We presented
baseline methods based both on non-machine learn-
ing approaches and neural model architectures.

Furthering this work, we plan to collect more
dialogues including different domains, entities, and
locales from the original ones for MultiWOZ 2.1.
Moreover, this new data set will include not only
written conversations, but also spoken dialogues
to evaluate the system performances for more re-
alistic scenarios. Then, all the data sets and the
baselines will be released for establishing a new
public benchmark in dialogue research.

In addition, we will continue to iterate on the
models with the following potential enhancements:
end-to-end learning instead of the pipelined pro-
cessing, joint modeling of both knowledge-seeking
and API-driven branches, and few shot transfer
learning for unseen domains or knowledge sources.
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A Appendices

A.1 Unstructured Knowledge Sources
Figure 9 and Figure 10 show examples of knowl-
edge snippets used in our data collection for
domain- and entity-specific augmented turns, re-
spectively. While domain-level snippets include
generic information that could be applicable over
all the domain entities, entity-level knowledge
varies depending on a given entity even for the
same question.

Domain Hotel
Title How can I get an invoice?
Body The property can provide you with an invoice

for your stay, so please contact them directly.
Domain Restaurant
Title Cancellation
Body You can cancel a reservation online or call the

restaurant directly. Please note that some restau-
rants have implemented a 24-48 hour cancella-
tion policy.

Domain Train
Title Discount Information for Children
Body One child ages 2-12 is eligible to receive a 50%

discount on the lowest available adult rail fare
on most trains with each fare-paying adult (age
18+).

Figure 9: Examples of domain-level knowledge

Domain Hotel
Entity Gonville Hotel
Title What is the parking charge?
Body Parking costs GBP 14 per day.
Domain Hotel
Entity Hamilton Lodge
Title Is there free parking at your lodge?
Body Hamilton Lodge offers free parking.
Domain Restaurants
Entity La Margherita
Title What credit cards are accepted?
Body La Margherita takes Visa, Mastercard and

AMEX.
Domain Restaurants
Entity Peking Restaurant
Title What type of payments are accepted at this loca-

tion?
Body Peking Restaurant accepts cash only.

Figure 10: Examples of entity-level knowledge

A.2 Human Evaluation Tasks
Figure 11 and Figure 12 show the crowdsourcing
user interfaces for human evaluations on appropri-
ateness and accuracy, respectively.

Figure 11: Crowdsourcing user interface for the human
evaluation on appropriateness

Figure 12: Crowdsourcing user interface for the human
evaluation on accuracy

A.3 Generated Responses
Figure 13 compares the example responses gener-
ated by the proposed methods. GPT-2 models gen-
erated more natural and appropriate responses to
be spoken by the agent than the answer extraction
baseline. Comparing between two GPT-2 variants,
the model with knowledge provided more accu-
rate information than the one without knowledge.
However, there is still room for improvement in
both appropriateness and accuracy compared to the
human responses.
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Example #1
Dialogue Context

User I’m also looking for info on a hotel called allenbell.
Agent Would you like me to book it for you?
User Am I able to smoke while staying at this hotel?

Relevant Knowledge
Q: Can I smoke there?
A: Allenbell is a non-smoking establishment.

Generated Responses
Human The Allenbell does not allow smoking in their hotel. Can I help you answer any other questions?
Extracted Allenbell is a non-smoking establishment.
GPT-2 w/o k. Please contact us for more information
GPT-2 with k. No, they don’t allow smoking in the hotel. Would you like to try a different hotel?

Example #2
Dialogue Context

User Great! I’m also looking for a place to eat in the same area. Something not too expensive, but not cheap.
Agent There are 21 places in the centre of town. What type of cuisine would you like?
User I am interested in moderately priced international food.
Agent I’d recommend the Varsity Restaurant. Would you like to book a table?

Relevant Knowledge
Q: Payment options
A: We prefer cash payment. We accept MasterCard and Visa with a $20 minimum purchase.

Generated Responses
Human Yes. Cash is actually the preferred payment method.
Extracted We prefer cash payment. We accept MasterCard and Visa with a $20 minimum purchase.
GPT-2 w/o k. Yes, all major credit cards are accepted. Would you like me to make a reservation for you?
GPT-2 with K. Yes, the restaurant accepts cash. Do you need anything else?

Example #3
Dialogue Context

User Can you help me find a restaurant that serves African food with a moderate price range please
Agent I am sorry, there aren’t any options available. May I ask if there is another type of restaurant you would

be interested in?
User Yes how about Asian food in the same price range?
Agent Yes I have the Yippee Noodle Bar in the center of town on King street in the moderate price range. They

serve Asian cuisine. Is there anything else I can do for you?
User Will you please book a table for 6 at 13:45 on Friday?
Agent Booking was successful. The table will be reserved for 15 minutes. Reference number is : 3GLLHSNN.

Relevant Knowledge
Q: What parking options are available at your location?
A: Only street parking is available.

Generated Responses
Human There is only parking on the street. Anything else I can do for you?
Extracted Only street parking is available.
GPT-2 w/o k. No, the restaurant does not offer parking for parking. Would you like me to book a reservation for you?
GPT-2 with k. Yes it does. Would you like me to make reservations for you?

Figure 13: Example responses generated by our proposed methods


