Agent-Based Dynamic Collaboration Support in a Smart Office Space

Yansen Wang, R. Charles Murray, Haogang Bao, and Carolyn P. Rosé
Language Technologies Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA, 15213
yansenwa, rcmurray, haogangb, cp3al@andrew.cmu.edu

Abstract

For the past 15 years, in computer-supported
collaborative learning applications, conversa-
tional agents have been used to structure group
interactions in online chat-based environments.
A series of experimental studies has provided
an empirical foundation for the design of chat-
based conversational agents that significantly
improve learning over no-support control con-
ditions and static-support control conditions.
In this demo, we expand upon this founda-
tion, bringing conversational agents to struc-
ture group interaction into physical spaces,
with the specific goal of facilitating collabora-
tion and learning in workplace scenarios.

1 Introduction

Al-Enhanced human learning is a broad area of re-
search with a history at least 50 years long (Aleven
and Kay, 2016), with Carbonell’s SCHOLAR sys-
tem being among the earliest systems (Carbonell,
1970). However, while great strides to introduce
technologies to enhance both individual and col-
laborative learning have been made in relatively
structured environments such as the lab and the
classroom over the decades of research since that
time, less progress has been made in more unstruc-
tured environments such as the workplace, where
the stakes are far higher and social and political
pressures play a more substantial role. This demo
presents an apparatus for support of collaboration
and learning in workplace scenarios using a Virtual
Human facilitator interacting face-to-face through
speech and gesture.

Large scale quantitative research, including ex-
perimental studies and carefully controlled quasi-
experimental corpus studies, are the basis for learn-
ing generalizable principles (i.e., causal models)
that underlie data-driven design of effective Al-
enabled systems that support human learning. In
recent decades, process data such as click logs,

discourse data, biometric sensors, and images are
used to understand the process of human learning
more deeply (Lang et al., 2017). Models trained
over this process data are also used to enable real-
time monitoring and support of learning processes
even as groups learn through multi-party discussion
(Adamson et al., 2014; Rosé and Ferschke, 2016).
Thus, the ability to draw causal inferences to moti-
vate effective interventions and the ability to trigger
personalized, just-in-time support go hand-in-hand
towards development of Al-enhanced learning ex-
periences.

Much of the prior research on workplace learn-
ing is qualitative work, which focuses on deep
understanding of individual contexts rather than
producing generalizable principles through inter-
vention studies. Thus, there is a dearth of empiri-
cal research that can rigorously motivate design of
effective Al-enabled interventions to support work-
place learning, and the data from such research is
unable to support model-enabled real-time sensing
technology that would facilitate just-in-time sup-
port for learning in the workplace. In response, we
have constructed a ”Smart Office Space” in which
to run lab studies with simulated work conditions
in order to discover causal mechanisms that can
form the foundation for design.

2 Smart Office Space

2.1 Technical Description

As a resource for exploring how to introduce an-
alytics and just-in-time support for collaborative
learning during work, we have assembled a “Smart
Office Space” which has been instrumented for
behavioral sensing (See Figures 1 and 2). It is de-
signed as a foundation for simulating workplace
conditions for collaborative and individual desk
work. Figure 1 displays the layout of the room
while Figure 2 describes the architecture of the
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Figure 1: Room layout.

software infrastructure for monitoring and support.
The foundation for the dialogue-based support
offered within the Smart Office Space is the Bazaar
toolkit (Adamson et al., 2014), which has been
used extensively as support for online collabora-
tive learning groups. In this past work, Bazaar
agents use what is referred to as an academically
productive talk(APT)-based approach, which uses
reasoning-focused prompts that encourage partici-
pants to articulate and elaborate their own lines of
reasoning, and to challenge and extend the reason-
ing of their teammates in a group discussion. In
order for students to learn and contribute to group
discussions, it is important for students to articulate
their reasoning and build on each other’s reasoning.
This allows them to identify gaps in their knowl-
edge and to observe how others think differently
and might possess knowledge that they are missing.
In this way, they have the opportunity to construct
knowledge together as a group. The Bazaar toolkit
has extensive authoring capabilities that enable a
wide range of activities to be authored for virtually
any topic area. Dozens of studies of group learning
have been conducted with an online, text-based ver-
sion of Bazaar. Here we place it within the Smart
Office Space to communicate, not with text, but
with speech and gesture within a physical space.
The room has been instrumented with a variety
of sensors including four Lorex 4K cameras with
microphones, a Kinect camera with a microphone
array, an Intel RealSense depth-sensing camera,
and an AWS DeepLens camera. Key software com-
ponents include the Microsoft Platform for Situated
Intelligence (PSI) (Bohus et al., 2017) for coordi-
nation across datastreams, CMU Sphinx (Lamere
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Figure 2: The software infrastructure.

et al., 2003) and the Azure Speech Recognizer for
speech recognition, the USC Institute for Creative
Technologies Virtual Human Toolkit (VHT) to
present an embodied conversational agent (Hartholt
et al., 2013), OpenFace for face recognition (Amos
etal., 2016), OpenPose for sensing body movement
and positioning (Cao et al., 2017), and Bazaar for
sensing collaboration-relevant events (such as ideas
that have not yet been elaborated or that no one has
responded to or built on yet) and triggering sup-
port for collaboration in response (such as prompts
that direct participants to consider and respond to
the contribution of another participant) (Adamson
etal., 2014).

2.1.1 Information Flow

Information flow for operating the Smart Office
Space is displayed in Figure 2. As we develop
the Smart Office Space, we are first focusing on
using the audio and video data provided by the
Lorex cameras and the Kinect microphone array
to communicate with users via VHT. The data cap-
tured by the cameras and the microphone array
are sent in separate streams to PSI. PSI passes the
streams to audio and video recognizers. As the rec-
ognizers detect events, they pass event messages



back to PSI: Visual information is translated to
semantic text describing body position and facial
expressions; location information is translated to
polar coordinates; and speech is translated to text.
Recognition of the various audio and visual events
may occur at different speeds, so PSI may receive
event messages out of order. PSI therefore syn-
chronizes event messages by their originating time,
then passes on the translated events as appropri-
ate: User location changes are passed directly to
VHT to update agent gaze direction with low la-
tency; speech translations along with user locations
and visual events like a raised hand are passed to
Bazaar; and some events are discarded, such as
recognition that the agent itself is speaking. Mes-
sages between PSI and Bazaar use an internally
developed multimodal message format that asso-
ciates a user identifier with any combination of the
following easily-expandable list of user attributes:
location, speech text, body position, facial expres-
sion, and any detected emotion. Bazaar uses the
information it receives from PSI to decide when
and how to respond to events in the room, passing
response messages through PSI, which coordinates
verbal and nonverbal communication, to VHT for
communication with users as a virtual agent.

2.1.2 Multimodal Stream Fusion

To handle multiple data streams, PSI (Bohus et al.,
2017) provides a runtime environment for parallel,
coordinated computation across data streams along
with a set of tools for visualization, data processing
and machine learning. We run PSI on Windows
10. PSI associates timestamps with the data it re-
ceives from video and audio streams and includes
these timestamps as it passes the data on to the
appropriate video and audio recognizers. When the
recognizers detect events, they include the originat-
ing timestamps with the event messages that they
return to PSI. PSI uses these timestamps to syn-
chronize messages received on different streams,
enabling it to identify both simultaneous events
and the correct order of event sequences. PSI’s
messages to Bazaar combine synchronous audio
and video events. For instance, PSI might combine
video recognition that a user is speaking, audio and
visual recognition of the user’s location, and audio
recognition of the user’s words in a single message
to Bazaar. In addition, PSI logs all data that it re-
ceives for playback, analysis, and offline machine
learning.

2.1.3 Multimodal Data Analysis

We incorporate multiple video and audio recogniz-
ers to process the video and audio streams received
through PSI. Video recognizers run on a Linux
GPU server for faster processing of neural network
models. We use OpenFace (Amos et al., 2016) to
find and recognize people facing any of the four
cameras, including recognizing whether two face
inputs are the same person. To detect body position
and key body points, we use OpenPose(Cao et al.,
2017). OpenPose forwards its body points for the
nose and neck to a location detector which maps
these to lines in real space to triangulate users’
locations. For location verification, we are cur-
rently using a Kinect microphone array and we
plan to try adding inputs from an Intel RealSense
depth-sensing camera. For audio speech-to-text
recognition, we are currently testing two packages
integrated with PSI: CMU Sphinx (Lamere et al.,
2003) and Microsoft Azure Speech to Text .

2.1.4 Agent Behavior Generation

Bazaar receives event updates from PSI and uses
this information to decide exactly how and when to
respond to events. For instance, when a user enters
the room, PSI sends Bazaar a message specifying
a newly created internal user identifier along with
the user’s location within the room, specified in
terms of polar coordinates. Bazaar saves this in-
formation as the beginning of its user model. As
additional information is acquired about the user —
including spoken words as text, body position, fa-
cial expression, and apparent emotion — PSI sends
event updates and Bazaar updates its user model
accordingly. Bazaar’s responses can be tailored
to the context. For example, if Bazaar wants to
respond to an assertion by prompting the user to
explain her reasoning, it can identify the user by
associating the location of the speech source with
the user’s saved location, call up the user’s name,
and respond to the user by name while gazing in
her direction.

2.1.5 Communication to Users

To communicate to users both verbally and non-
verbally, Bazaar sends messages through PSI to
VHT (Hartholt et al., 2013). VHT’s display to the
user can be designed to represent a 3-dimensional
setting with one or more actors that communicate to

"https://azure.microsoft.com/en-us/services/cognitive-
services/speech-to-text/
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Figure 3: Virtual tutor

users using speech, facial expressions, gaze direc-
tions, body position, and gestures. Speech is sent
to VHT as text while non-verbal behavior is speci-
fied using the Behavior Markup Language (BML)
realization library, “Smartbody”’(Feng et al., 2012).
At this stage, we communicate nonverbally using
facial expressions, gaze direction, and simple arm
and hand gestures. Facial expressions are specified
in terms of lips, brows, and eyes, while gaze direc-
tion is realized through coordinated rotation of the
shoulders, neck, head and eyes. We use these non-
verbal cues to present some common non-verbal
expressions — neutral, listening, confused, angry,
happy, and amazed — and to gaze at individual users.
For instance, if user Ron has offered an idea and
Joan has not contributed to the ongoing group dis-
cussion in a while, the VHT may turn towards Joan
and say, “Joan, can you build on the idea that Ron
has offered?” Using the Smart Office Space, we are
working towards collecting multiple datasets in col-
laboration with industry partners who help inform
the characteristics of workplace scenarios for our
studies including support for maintaining social
distancing during intensive collaborative learning.

3 Demo Session

The video presentation of the demo for the on-
line demo session will display scenarios in which
groups of individuals work together on a task, with
the VHT providing guidance for task structuring
and collaborative work processes. What makes the
demo unique among other applications of in person
multi-party dialogue is the use of the virtual human
as a group learning facilitator, enabled through the
Bazaar architecture.
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