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Abstract
Acoustic/prosodic (a/p) entrainment has been
associated with multiple positive social as-
pects of human-human conversations. How-
ever, research on its effects is still preliminary,
first because how to model it is far from stan-
dardized, and second because most of the re-
ported findings rely on small corpora or on
corpora collected in experimental setups. The
present article has a twofold purpose: 1) it
proposes a unifying statistical framework for
modeling a/p entrainment, and 2) it tests on
two large corpora of spontaneous telephone in-
teractions whether three metrics derived from
this framework predict positive social aspects
of the conversations. The corpora differ in
their spoken language, domain, and positive
social outcome attached. To our knowledge,
this is the first article studying relations be-
tween a/p entrainment and positive social out-
comes in such large corpora of spontaneous di-
alog. Our results suggest that our metrics ef-
fectively predict, up to some extent, positive
social aspects of conversations, which not only
validates the methodology, but also provides
further insights into the elusive topic of en-
trainment in human-human conversation.

1 Introduction

A phenomenon that has been repeatedly docu-
mented in human-human conversations is the ten-
dency of partners to become more similar to each
other in the way they speak. This behavior, known
in the literature as entrainment, has been shown
to occur along several dimensions during human-
human interaction (see Pardo, 2006; Brennan and
Clark, 1996; Reitter et al., 2011; Levitan et al.,
2015; Gravano et al., 2015; Fandrianto and Eske-
nazi, 2012, inter-alia), being one of these dimen-
sions the behavior of acoustic-prosodic (a/p) fea-
tures (see, for example, Ward and Litman, 2007;
Levitan and Hirschberg, 2011).

A/p entrainment has been associated with multi-
ple social aspects of human-human conversations,

such as the degree of success in completing tasks
(Nenkova et al., 2008; Reitter and Moore, 2014),
the perception of competence and social attrac-
tiveness (Street, 1984; Levitan et al., 2011; Štefan
Beňuš et al., 2014; Michalsky and Schoormann,
2017; Schweitzer and Lewandowski, 2014), and
the degree of speaker engagement (De Looze et al.,
2014; Gravano et al., 2015). Nonetheless, empir-
ical evidence also points toward these relations
being quite complex. As an example, disentrain-
ment (speakers actively adapting to become more
dissimilar to each other) has also been associated
with positive social aspects in conversations (see,
for example, Healey et al., 2014; De Looze et al.,
2014; Pérez et al., 2016).

In spite of these advances, research on the effects
of a/p entrainment is still preliminary. In first place,
because the way a/p entrainment in conversations
is modeled is far from standardised. As an illustra-
tive example, when estimating a/p entrainment met-
rics, some studies first approximate the evolution
of each speaker’s a/p features and then use these ap-
proximations to calculate a/p entrainment metrics
(Gravano et al., 2015; De Looze et al., 2014; Kou-
sidis et al., 2009; Pérez et al., 2016); others study
the correspondence between adjacent inter-pausal
units (IPUs) — defined as speech segments sepa-
rated by a pause — from different speakers and de-
rive metrics from it (Levitan and Hirschberg, 2011;
Weise et al., 2019); and still other studies mea-
sure a/p features in different sections of speech for
later comparing these values to compute a/p entrain-
ment metrics (see, for example, Savino et al., 2016).
Moreover, studies commonly differ in which met-
rics are analyzed. For this reason, a reliable, simple,
general, and flexible framework able to unify the
estimation of different types of entrainment metrics
is needed. In second place, research is still prelimi-
nary because most of the reported findings rely on
small corpora, or on corpora collected in experi-
mental setups, making it hard to extrapolate their
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conclusions to more general contexts. In this way,
evidence is still needed on how a/p entrainment
relates to social aspects of human-human conversa-
tion under different types of natural interactions.

The present article has a twofold purpose. First,
it proposes a unifying approach for modeling a/p
entrainment in conversations. The methodology
is simple and flexible enough as to allow calcu-
lating adapted versions of several a/p entrainment
metrics used in previous studies. Second, it eval-
uates three entrainment metrics derived from the
proposed framework on two very different large
corpora of spontaneous telephone interactions (the
Switchboard corpus, in English, and a large col-
lection of call-center conversations, in Spanish),
testing whether these metrics predict positive so-
cial aspects of conversations. To our knowledge,
this is the first article testing the relation between
a/p entrainment and positive social outcomes in
such large corpora of spontaneous natural dialog.

Overall, our results suggest that metrics derived
from the proposed methodology effectively predict,
up to some extent, positive social aspects in conver-
sations, which not only validates the methodology,
but provides further evidence suggesting that a/p
entrainment relates to positive social aspects in
human-human conversation under different types
of natural settings. Additionally, insights on how
a/p entrainment metrics relate to social outcomes
predictions is provided.

The rest of the paper is structured as follows.
Section 2 presents the proposed framework for
modeling a/p entrainment. Section 3 details on
how we empirically test for relations between met-
rics obtained using the proposed methodology and
positive social aspects of conversations. Section 4
presents results from the empirical study. Section
5 provides discussion and concludes.

2 A unifying framework for modeling
a/p entrainment

Here we present a methodology for modeling a/p
entrainment. We divide the process in three steps:
1) extracting a/p features from IPUs, 2) estimating
the speakers’ a/p evolution functions, and 3) calcu-
lating a/p entrainment metrics from a/p evolution
functions. The following sections describe each
step.

2.1 Extracting a/p features from IPUs

First, for each speaker in a conversation (A and
B for exposition) all of their IPUs are identified.1

Then, for each IPU the value of their a/p features
are extracted. In this study we used the Praat
toolkit (Boersma and Weenink, 2019) to estimate
the IPU’s F0 maximum and mean; intensity max
and mean; noise-to-harmonics ratio (NHR); and
jitter and shimmer (computed over voiced frames
only). We also extracted speech rate, measured in
syllables per seconds.2

Figure 1 plots the F0 mean values for all IPUs in
a sample Switchboard conversation. Each horizon-
tal segment represents an IPU, graphically indicat-
ing its beginning and end times.
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Figure 1: Estimated F0 mean values for all IPUs in a
sample Switchboard conversation. Note: speaker A in
gray, speaker B in black.

2.2 Estimating speakers’ a/p evolution
functions

Since speakers do not speak during the entirety of
a conversation, the evolution of a/p features is un-
defined for several portions of a conversation. This
stands as a challenge when modeling a/p entrain-
ment. Previous research has dealt with this issue
in multiple ways; for example, by pairing speak-
ers adjacent IPUs (Levitan and Hirschberg, 2011;
Weise et al., 2019) or by means of sliding windows
(Kousidis et al., 2009; De Looze et al., 2014; Pérez
et al., 2016). Instead, we propose filling these gaps
by fitting a continuous function to approximate the
evolution of a given a/p feature during a conversa-
tion. We do this by fitting a k-nearest neighbors

1For the Switchboard corpus we used the MS-State tran-
scripts (Deshmukh et al., 1998), where IPUs are annotated.
For the call center conversations we used the output of an
in-house automatic speech recognition system (Cartas et al.,
2019), defining an IPU as a continuous segment of speech
without a pause larger than 200 ms.

2Syllables were estimated using the Pyphen package
(Pyphen, 2019).
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(KNN) regression model to each speaker’s a/p fea-
ture values. Where, for each IPU, its x value is
defined as its middle point in time (i.e., its start
time plus its end time, divided by two). We refer
to these estimated functions as fA and fB below.3

As we show below, adapting existing a/p entrain-
ment metrics to take these functions as input is
straightforward.

A few considerations should be made regard-
ing the way to do these approximations. Due to
the presence of outliers, before fitting these func-
tions, all IPUs having an associated value more
than three standard deviations away from the mean
are dropped (the corresponding mean and standard
deviation are measured at the conversation level
for each speaker). Second, fA is defined for the
interval [tAmin, t

A
max], where tAmin is the start time of

A’s first non-outlier IPU, and tAmax is the end time
of A’s last non-outlier IPU (analogously for fB).
Third, we define the common support as all time
values that go from t− = max(tAmin, t

B
min) up to

t+ = min(tAmax, t
B
max) (i.e., all values of t where

both functions are simultaneously defined). Fourth,
approximations for speakers that do not have at
least k non-outlier IPUs in a conversation are not
computed (being k the number of neighbors used
to estimate the functions).

Figure 2 plots the estimated approximation func-
tion for the IPUs plotted in Figure 1.
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Figure 2: Estimated F0 mean evolution during a con-
versation. Notes: speaker A in gray, speaker B in
black. The number of neighbors in the KNN regres-
sions equals 7.

2.3 Calculating a/p entrainment metrics
from a/p evolution functions

Existing a/p entrainment metrics can be easily
adapted to take these functions as input. In this
work we adapt and empirically test the three metric

3As we will see in Section 3.2, k (the number of neighbors)
can be treated as a hyperparameter to be tuned during the
model selection procedure.

types presented in Levitan and Hirschberg (Levitan
and Hirschberg, 2011): 1) proximity (a/p features
having similar mean values across partners over the
entire conversation), 2) convergence (a/p features
increasing in similarity across partners over time),
and 3) synchrony (speakers adjusting the values of
their a/p features in accordance to those of their
interlocutor).

2.3.1 Proximity
Proximity between fA and fB (proxA,B) can be
measured as the negated absolute difference of the
mean values of fA and fB , that is:

−|f̄A − f̄B|

where, in general, ḡ stands for the mean value of
function g over the common support, and is calcu-
lated as:4

ḡ =
1

t+ − t−
∫ t+

t−
g(t)dt

Values of proxA,B close to zero indicate that fA

and fB are on average close to each other, while
values far from zero indicate that they are distant.

2.3.2 Convergence
Convergence between fA and fB (convA,B) can
be measured as the Pearson correlation coefficient
between−|fA−fB| and t, which can be calculated
as: ∫ t+

t− (D(t)− D̄) · (t− t̄)dt√∫ t+

t− (D(t)− D̄)2dt ·
∫ t+

t− (t− t̄)2dt

where D(t) stands for −|fA(t) − fB(t)|. Posi-
tive/negative values of this metric indicate that fA

and fB become closer to/further apart from each
other as the conversation advances.

2.3.3 Synchrony
Synchrony between fA and fB (syncA,B) can be
measured as the Pearson correlation coefficient be-
tween fA and fB . Given that speakers are not ex-
pected to adapt to the other instantaneously, several
studies consider a lag factor (δ) when calculating
synchrony (see, for example, Kousidis et al., 2009;
Pérez et al., 2016). In this study we also incorpo-
rate lags, which is a small departure from Levitan
and Hirschberg (Levitan and Hirschberg, 2011).
Concretely, we calculated syncA,B as:

4In our empirical study, integrals are calculated using the
Monte Carlo integration method.
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Figure 3: Sample conversations with different values of the estimated a/p entrainment metrics on intensity max.
Notes: speaker A in gray, speaker B in black. The number of neighbors in the KNN regressions equals 7.

∫ t+

t− (fA(t+ δ)− f̄A) · (fB(t)− f̄B)dt√∫ t+

t− (fA(t+ δ)− f̄A)2dt ·
∫ t+

t− (fB(t)− f̄B)2dt

where, in order to capture lags in synchrony be-
tween both functions, we test values of δ ∈
{−15,−10,−5, 0, 5, 10, 15} (being δ expressed in
seconds). We take as the final value of syncA,B

the one associated with δ resulting in the maximum
value of |syncA,B|.5 Positive values of syncA,B

indicate that fA and fB evolve in synchrony with
each other, while negative values indicate that they
evolve in opposite directions (e.g., when one goes
up the other goes down).

To illustrate the kind of behavior captured by
these metrics, Figure 3 plots sample conversations
with high and low values of these three a/p en-
trainment metrics calculated on the ‘intensity max’
feature.

3 Empirical study materials and methods

Next, we ran a series of machine learning experi-
ments aimed at investigating whether the metrics
derived from the proposed methodology have any
predictive power over positive social aspects of con-
versations. This section describes the corpora and
the methodology used.

3.1 Corpora
3.1.1 Switchboard corpus
The Switchboard Corpus (SWBD) (Godfrey et al.,
1992) is a collection of 2,438 recordings of spon-

5Note that shifting a series slightly modifies the common
support, something that should be taken into account.

taneous two-sided telephone conversations among
543 speakers (both female and male) from all areas
of the United States. During collection, a robot
operator system handled the calls, gave the caller
appropriate recorded prompts, selected and dialed
the callee, introduced one of about 70 topics for dis-
cussion (internally referred as IVIs), and recorded
the whole speech from the two subjects into sep-
arate channels. Each conversation was annotated
for degree of naturalness on Likert scales from 1
(very natural) to 5 (not natural at all).6 For this
corpus, perceived naturalness is the target social
outcome to predict.

After dropping from the analysis a few conver-
sations for which naturalness scores were missing,
we were left with a total of 2,426 conversations
(average conversation length: 382.3 seconds; SD:
124.8 seconds). To make the analysis and results
more interpretable (more on this in Section 3.2),
we dichotomized the naturalness scores in the fol-
lowing way: We treated values 1 and 2 as high
scores (which we set equal to 1 — 88.4% of all
conversations) and values from 3 to 5 as low scores
(which we set to 0 — 11.6% of all conversations).

In addition to the proposed metrics, our exper-
iments included features referred to as external
features, which are expected to be linked to the
naturalness score, but are unrelated to the speakers’
a/p features. These features are used for build-
ing baseline models to compare against. For the
case of SWBD these variables are: IVI indicator

6More details on naturalness annotations available
at https://catalog.ldc.upenn.edu/docs/
LDC97S62/swb1_manual.txt.

https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_manual.txt
https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_manual.txt
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variables (indicating the IVI used as the conver-
sation topic), conversation length (in seconds), di-
alect area indicator variables (indicating whether
at least one speaker belonged to a given dialect
area, and whether both speakers belonged to the
same dialect area), three gender indicator variables
(both-female-speakers, both-male-speakers, mixed-
gender-speakers), and the absolute value of the age
difference between the speakers (in years).

3.1.2 Call center corpus
The call center corpus (CCC) is a collection of
of 19,832 inbound call center conversations be-
tween clients and representatives of a telephone
company (for further details see Llimona et al.,
2015; Luque et al., 2017) (average conversation
length: 551.7 seconds; SD: 432.9 seconds). It was
collected throughout one month and comprises a
huge variety of interactions. All conversations are
in Latin American Spanish. At the end of each call,
the customer was called back and gently asked to
complete a brief service quality survey. Concretely,
they had to indicate their overall satisfaction with
respect to their previous call center call. To do
so, they had to press from 1 (very dissatisfied) to
5 (very satisfied). For this corpus, self-reported
customer satisfaction is the target social outcome
to predict.

We again dichotomized the target variable in
the following way: 4 and 5 were treated as high
scores (which we set equal to 1 — 80.5% of all
conversations), and values from 1 to 3 were treated
as low scores (which we set to 0 — 19.5% of all
conversations).

For anonymity reasons, the availability of exter-
nal variables was more limited for CCC. Thus, only
conversation length and the three gender indicator
variables (Llimona et al., 2015) were included as
external features.

3.2 Testing for associations between a/p
entrainment and social outcomes

To test if the proposed entrainment metrics predict
the outcomes, we ran a series of machine learning
experiments. For each corpus we trained several
XGBoost models (Chen and Guestrin, 2016)7 using
different feature sets, and evaluated their predic-
tive performance. For example, one such model

7XGBoost is an open-source and efficient software imple-
mentation of the gradient boosting framework (Friedman et al.,
2001). XGBoost has the additional advantage of dealing with
missing values, which, in our analysis, were present both in
the external features and the a/p entrainment metrics.

used only the synchrony metrics computed on the
8 a/p features described in Section 2.1 (F0 max, F0
mean, intensity max, intensity mean, NHR, jitter,
shimmer, speech rate); other model considered all
24 entrainment metrics (8 a/p features × 3 met-
ric types); other model considered only external
features; and so on.

As the evaluation metric, we used the area under
the receiver operating characteristic curve (AUC)
(see Alpaydin, 2020). AUC goes from 0 to 1, where
an AUC value equal to 0.5 indicates an equal-than-
chance performance, while larger values indicate
that the learning model effectively predicts the out-
comes, up to some extent. To obtain our out-of-
sample performance estimates we ran 10-fold cross
validation experiments (see James et al., 2014).
We tuned the hyperparameters following a random
search strategy (Bergstra and Bengio, 2012): For
each value of k ∈ {3, 5, 7, 9} (number of neigh-
bors used in the functional approximations) we
tested 60 randomly sampled combinations of seven
XGBoost hyperparameters.8 The chosen hyperpa-
rameters are those for which the model had the
higher cross validation performance.

3.2.1 Model interpretability
Comparing performance across models provides
valuable information regarding feature importance.
However, further valuable information can be ob-
tained by interpreting the models’ inner workings.
To do so, several strategies have been proposed (see
Molnar, 2019). In our analysis we made use of the
Shapley additive explanations (SHAP) technique
(Lundberg and Lee, 2017). SHAP values are calcu-
lated for each observation and predictive feature in
the dataset used to train the model being analyzed.
Concretely, a given SHAP value φi,j estimates, for
observation i, how feature j contributes to push
the model output (in logit scale) from its base out-
put (being the base output equal to the average
model output over the training dataset). In this way,
SHAP values can be used to estimate feature impor-
tance for a given feature j by calculating

∑
i |φi,j |.

They can also characterize how the outputs diverge
from the base output as feature j grows, by using
SHAP feature dependence plots (that is, plotting
φi,j against all observed values of feature j).9

8Number of trees; tree depth; step size shrinkage coef-
ficient; minimum loss reduction required to make a further
partition; minimum child weight; number of columns sampled
in each tree; and number of observations sampled in each tree.

9It is important to stress that any pattern derived from the
model interpretability analysis does not imply that a feature
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4 Empirical study results

4.1 Predictive performance

We trained models on eight different sets of in-
puts: 1) only proximity metrics, 2) only conver-
gence metrics, 3) only synchrony metrics, 4) all
a/p entrainment metrics, 5) external features and
proximity metrics, 6) external features and conver-
gence metrics, 7) external features and synchrony
metrics, and 8) external features and all a/p entrain-
ment metrics. The rest of this section presents the
performances obtained for each corpus.

4.1.1 Switchboard corpus results

Table 1 presents the estimated performance for each
set of input features. The top panel presents re-
sults excluding external features, while the bottom
one includes them. Within each panel, models are
sorted in descending AUC order.

Input Features AUC
Excluding external features

Only synchrony 0.575
All a/p entrainment metrics 0.566
Only proximity 0.561
Only convergence 0.547

Including external features
External and synchrony 0.641
External and convergence 0.631
External and all a/p entrainment metrics 0.630
Only external 0.627
External and proximity 0.624

Table 1: Switchboard corpus AUC results

Table 1 shows that the trained models are able
to predict up to some extent perceived naturalness.
In all cases the obtained results are higher than
chance (i.e., AUC > 0.5). But not all features have
the same predictive performance. Synchrony en-
trainment metrics obtain the best results. Training
on just synchrony metrics results in an AUC of
0.575, while using only convergence or proximity
metrics leads to lower AUC values. Training on
all a/p entrainment metrics results in an AUC of
0.566, lower than the one obtained with synchrony
metrics.

Training only on external features results in an
AUC of 0.627, higher than all values presented in
the top panel. However, adding synchrony metrics
to the external features is the combination that leads
to the best overall results.

has a causal relationship with the outcome. It merely indicates
that a given feature causes the model to predict the outcome
in a particular way (see Molnar, 2019).

4.1.2 Call center corpus results

Input Features AUC
Excluding external features

All a/p entrainment metrics 0.582
Only synchrony 0.560
Only convergence 0.556
Only proximity 0.548

Including external features
External and all a/p entrainment metrics 0.582
External and proximity 0.568
External and synchrony 0.564
External and convergence 0.560
Only external 0.537

Table 2: Call center corpus AUC results

For CCC, Table 2 shows that the trained mod-
els are also able to predict up to some extent self-
reported customer satisfaction. However, we ob-
serve that combining all 24 entrainment metrics
leads to better results (AUC = 0.582) than includ-
ing just the synchrony ones (AUC = 0.560).

In this case the external features have low pre-
dictive power when compared to the entrainment
metrics. Adding the external features to the model
considering all a/p entrainment metrics yields ex-
actly the same results as the ones obtained by the
model trained only on all a/p entrainment metrics.

4.2 Model interpretability results

Switchboard corpus
Input Feature Feature Importance
Both-female-speakers 100.0
Speech-rate-synchrony 45.7
Conversation-length 27.8
Intensity-mean-synchrony 19.1
Jitter-synchrony 18.8
F0-max-synchrony 16.4
Age-difference 16.0
Shimmer-synchrony 9.9
F0-mean-synchrony 9.1
Intensity-max-synchrony 6.3

Call center corpus
Input Feature Feature Importance
Speech-rate-proximity 100.0
Speech-rate-synchrony 62.3
Conversation-length 54.9
Intensity-max-convergence 47.3
Jitter-convergence 36.6
F0-mean-proximity 30.2
Jitter-proximity 26.5
Speech-rate-convergence 23.8
F0-mean-convergence 19.9
NHR-convergence 19.9

Table 3: Feature importance ranking. Note: values
are scaled such that the score associated to the most
important feature equals 100.
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Figure 4: SHAP feature dependence plots for SWBD.

Table 3 contains the estimated feature impor-
tance values for both corpora analyzed. Each panel
shows the top 10 features detected as most impor-
tant in the best performing models (external and
synchrony for SWBD; external and all a/p entrain-
ment metrics for CCC). Both models were trained
using the entirety of their respective corpus and
making use of the best set of hyperparameters pre-
viously found.

For SWBD, Table 3 shows that the both-female-
speakers indicator variable was by far the most im-
portant feature, followed by speech-rate-synchrony.
For the case of CCC, speech rate entrainment
metrics dominate the importance ranking, being
speech-rate-proximity the most important one. No-
tably, no gender related feature is included in the
ranking of the top 10 most important features for
CCC.

Feature importance values are interesting in and
of themselves, but say little of the way models
make use of these features. To tackle this issue,
Figure 4 presents SHAP feature dependence plots
for SWBD’s 10 most important features. Horizon-
tal lines centered at SHAP = 0 serve as a reference;
values appearing above/below this line indicate that
the model output tends to increase/decrease relative
to the base output. Regarding the external features,
Figure 4 shows that conversations in which both
speakers are female were associated to higher val-
ues of predicted naturalness, that short conversa-
tions are predicted to be less natural (speakers were
instructed to speak for at least five minutes, but
were allowed to speak longer), and that large age
differences lead to higher naturalness predictions.

It is interesting to note that high synchrony val-
ues are not necessarily associated with higher per-
ceived naturalness predictions. It is the case for

shimmer-synchrony and F0-mean-synchrony (to a
lesser extent). However, the opposite is observed
for many a/p features. Moreover, speech-rate-
synchrony and intensity-max-synchrony show an
inverted U pattern, where extremely low or high en-
trainment values are associated to lower predicted
values of the outcome.

Figure 5 presents a similar analysis for CCC. Re-
garding conversation length, the only high-ranked
external feature, extremely short conversations are
associated to lower predictions of self-reported sat-
isfaction. Regarding a/p entrainment metrics, once
again higher entrainment does not necessarily lead
to higher predictions of the outcome variable. In
fact, this is not the case for all entrainment met-
rics related to speech rate. Only intensity-max-
convergence shows a positive relation between a/p
entrainment and predicted satisfaction. Once again
negative relations and inverted U patterns are ob-
served (although the latter are less noticeable than
in SWBD).

5 Discussion

In this work we proposed a unifying framework for
modeling different types of a/p entrainment in natu-
ral conversations. We also tested on two very differ-
ent corpora whether three metrics derived from our
framework provide valuable information for pre-
dicting positive social outcomes in conversations
(perceived naturalness in SWBD and self-reported
customer satisfaction in CCC). Our results suggest
that these metrics effectively relate to positive so-
cial outcomes. However, several remarks should
be made.

First, the fact that the achieved AUC scores are
greater than chance not only validates the proposed
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Figure 5: SHAP feature dependence plots for CCC.

metrics, but strongly suggests that a/p entrainment
is related to positive social outcomes. Importantly,
this result was not found on a single corpus, but on
two independent ones. Both corpora had not only
different positive social outcomes attached, but also
differed in their domain and even in their language
(English and Spanish). Future research should fo-
cus on testing if these results prevail across broader
domains and for further social variables.

Second, even when the obtained results are
higher than chance, they are far from being excep-
tionally high. This suggests that a/p entrainment
metrics by themselves — at least the ones tested —
may not contain enough predictive information as
to achieve competitive results. Probably a competi-
tive model should incorporate information regard-
ing the semantic content of conversations and/or,
for the case of a corpus like CCC, customer rela-
tionship management related information. How-
ever, this does not mean that the proposed metrics
are of no use. Future research should focus on
studying whether the information provided by a/p
entrainment metrics complements the one provided
by other sources. In our experiments we tested this
up to some degree. In particular, we observed that
a/p entrainment metrics complement the informa-
tion contained in the external features. This effect
is very strong for CCC and less strong for SWBD.

Third, the fact that the best set of features differs
across corpora, suggests that which features predict
positive social outcomes depends on the outcomes
being predicted and the corpus itself. Note that a
similar pattern was observed in Pérez et al. (Pérez
et al., 2016) where, even on the same corpus, the
significance of synchrony metrics calculated on
different a/p features varied across different social
outcomes.

Fourth, SHAP dependence plots suggest that the
manner in which predictive models make use en-
trainment metrics is quite complex. First of all, not
always are higher entrainment values associated to
higher predicted values of a positive social aspect.
Rather, two more patterns are observed: a nega-
tive relation between a/p entrainment and positive
outcomes, and an inverted U pattern. Additionally,
in line with the third remark, it is interesting to
note the effects of a given a/p entrainment metric
are not the same across corpora, again suggesting
heterogeneity across tasks and corpora. An illus-
trative case are the patterns observed for speech-
rate-synchrony, for which an inverted U pattern
is observed in SWBD and a negative relation is
observed in CCC.

Finally, the reason why people do entrain is still
unknown (see, for example, Natale, 1975; Giles
et al., 1991; Chartrand and Bargh, 1999; Pickering
and Garrod, 2004, 2013). Consequently, metrics
such as the ones tested in this work, albeit noisy
and imperfect, are likely to be capturing part of
some more complex phenomenon that we do not
fully understand yet. Further research on the causes
of entrainment in human speech is still needed.
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