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Abstract

We describe our system (TiiKaPo) submitted for Task 6: DeftEval, at SemEval 2020. We
developed a hybrid approach that combined existing CNN and RNN methods and investigated the
impact of purely-syntactic and semantic features on the task of definition extraction, i.e, sentence
classification. Our final model achieved a F1-score of 0.6851 in the first subtask.

1 Introduction

By all accounts, the first reliable English dictionary was written by Samuel Johnson' and published on 15
April, 1755. It was 18 inches tall, 20 inches wide when opened, and contained 42,773 entries. It took Dr.
Johnson 7 years to complete, and yet it was missing the word contrafibularity, amongst others.> In the 265
years that have passed since, the world has evolved at a blisteringly fast pace with technology integrating
itself ever more closely with our lives. However, the compilation and maintenance of dictionaries and
lexicons — one of the most important and authoritative sources of meaning — continues to be the exclusive
field of domain experts and lexicographers. Nevertheless, with the recent advances in natural language
processing, this area — like many others that deal with human language — has seen a growing interest in
automating the development of such resources.

Definition extraction is defined as the automatic identification of definitional knowledge in text,
modeled as a binary classification problem between definitional and non-definitional text. In the early
days of definition extraction, rule-based approaches leveraging linguistic features showed promise.
Westerhout (2009) used a combination of linguistic information (n-grams, syntactic features) and
structural information (position in sentence, layout) to extract definitions from Dutch texts. Such
approaches, however, were found to be dependent on language and domain, and scaled poorly. Later
research incorporated machine learning methods to encode lexical and syntactic features as word vectors
(Del Gaudio et al., 2014). Noraset et al. (2017) tackled the problem as a language modelling task over
learned definition embeddings. Espinosa-Anke et al. (2015) derive feature vectors from entity-linking
sources and sense-disambiguated word embeddings. More recently, Anke and Schockaert (2018) use
convolutional and recurrent neural networks over syntactic dependencies to achieve very good results on
the WCL and WO0O datasets (Navigli and Velardi, 2010; Jin et al., 2013).

This paper describes our approach of combining existing methods over state-of-the-art techniques that
involve the use of contextualized word embeddings such as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018) in an attempt to determine if the former still offer avenues of optimization that can help them
perform competitively with the latter.
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1.1 Task Background

The DeftEval shared task (Spala et al., 2020) is based around the English-language DEFT (Definition
Extraction From Texts) corpus (Spala et al., 2019). It consists of annotated text extracted from the
following semi-structured and free-text sources. Compared to similar existing definition extraction
corpora such as WCL (Navigli and Velardi, 2010) and W00 (Jin et al., 2013), the data offered by the
DEFT corpus is larger in size (23,746 sentences; 11,004 positive annotations) while also providing
finer-grained feature annotations.

The shared tasks consists of three subtasks: 1) Sentence Classification (classify if a sentence contains
a definition or not), 2) Sequence Labeling (label each token with BIO tags according to the corpus
specification), and 3) Relation Classification (label the relations between each tag according to the corpus
specification). We participated in the first subtask. The test data for the first subtask is presented in the
following format:

[SENTENCE) [BIN_TAG]

BIN.TAG is 1 if SENTENCE contains a definition, O otherwise. During training for the first subtask, the
training and development datasets were converted into the same format as the test dataset using a script
provided with the corpus. A positive label was associated with every sentence that contained tokens with
B-Definition Or I-Definition tags; all other sentences were associated with a negative label.

2 System Overview

2.1 Baseline

We developed and iterated on both LSTM-based (Hochreiter and Schmidhuber, 1997) recurrent and
convolutional (O’Shea and Nash, 2015) neural network models. Our RNN architecture is a network of
a single bidirectional LSTM layer followed by two feed-forward layers and a final sigmoid-activated
read-out layer. This architecture is implemented by model BL-RNN (Baseline RNN) whose input layer
accepts sequences of feature vectors. Our hybrid-CNN architecture is implemented by model BL-CNN
(Baseline CNN), which is based on the work by Anke and Schockaert (2018). It accepts feature vector
sequences that are passed through a one-dimensional convolutional filter and a max-pooling layer,
followed by a single BiLSTM and read-out layers. The intuition behind combining convolutional and
recurrent layers is to leverage the implicit local feature-extraction performed by the convolutional layers to
refine the final representation passed to the recurrent layer, which accounts for global features. The input
sequences are composed as concatenations of vectors of individual features at the token level, resulting in
a homogenous representation, e.g. each token is encoded as the concatenation of a n-dimensional word
vector, a m-dimensional one-hot encoded POS tag vector, etc.

We conducted several experiments with the above two architectures and iterated on successful models.
The provided corpus was pre-split into train and dev splits. A 90-10 split was performed on the train split
to generate the validation set; the dev split was used as the test data as-is. All models were trained for
100 epochs with an early-stopping mechanism that monitored the validation loss over the last 10 epochs.
Batch size was set to 128, and ADAM (Kingma and Ba, 2014) was used as the binary cross-entropy
optimizer. URLs were stripped from token sequences as a preprocessing step. Sentences were parsed with
spaCy? using the en_core_web_1g model* to obtain POS tag sequences and dependency relation data.

The results of our experiments are listed in table 1. The reported figures were averaged over three iterations
of each experiment.

*https://spacy.io/
*nttps://spacy.io/models/enten_core_web_lg
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Experiment Model Word Embeddings Features Precision Recall F1-Score

1. W/o Semantic

) BL-RNN - POS + Deps 0.56 0.75 0.64
Information
Self-trained 0.74 0.60 0.66
BL-RNN Glove 0.70 0.64 0.67
w2v Tokens 0.70 0.61 0.65
Gl 0.78 0.59 0.67
2. W/ Semantic BL-CNN ove
. w2v 0.77 0.51 0.61
Information
Glove 0.74 0.63 0.68
BL-RNN 2 0.71 0.60 0.65
C:/ v Tokens + Deps 0'72 0.62 0.67
BL-CNN ove : ' '
w2v 0.72 0.58 0.64
Tokens + POS 0.75 0.62 0.68
Tokens + Deps + POS 0.76 0.58 0.66
BL-RNN
Tokens + POS + Punct 0.76 0.64 0.69
3. Effect of punctuation & Gl Tokens + Deps + POS + Punct 0.76 0.62 0.68
ove
dependency relations Tokens + POS 0.74 0.65 0.69
Tokens + Deps + POS 0.77 0.67 0.71
BL-CNN
Tokens + POS + Punct 0.77 0.64 0.70
Tokens + Deps + POS + Punct 0.79 0.62 0.70
. Tokens + POS + Punct 0.77 0.64 0.70
4. Final Model FINAL-HYBRID Glove
Tokens + Deps + POS + Punct 0.75 0.70 0.73

Table 1: Results of experiments performed on the baseline & final models

2.2 Influence of Syntactic & Semantic Information

Our initial experiments were premised on the hypothesis that neural definition extraction can be primarily
modelled on morphosyntactic features while excluding or restricting the use of semantic and lexical
information. By limiting the influence of semantics, we expected to train a model that generalized
well over multiple domains by virtue of being less susceptible to lexical cues that could potentially act
as distractors. To test this, we trained multiple models on a combination of (embedded) word token,
POS and dependency relation features. With the exception of one model that trained its own word
embeddings, word embedding matrices of other models with word token features were initialized with
300-dimensional pre-trained GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013)
embeddings respectively. The GloVe and w2v embeddings were trained on the Common Crawl and
Google News corpora respectively.

Most interestingly, the model that was exclusively trained on syntactic information was the one that
performed the worst. Virtually all other models out-performed the syntax-only model even when they
were only trained on word tokens. This fundamentally proved our hypothesis to be flawed, further
corroborated by the minimal effect of network architecture on the results. These findings indicated that
syntactic features were the least informative when used by themselves and the most informative when used
in concert with semantic information provided by word embeddings. The corollary of the same suggests
that word embeddings — pre-trained or otherwise — are able to approximate rudimentary information about
syntax that would would otherwise be offered by syntactic features like part-of-speech tags. It also follows
that combining both kind of features in a complementary manner should enable the model to perform
better.

2.3 Feature Modelling

Building upon the findings of the previous experiments, we tested the effect of combining punctuation and
part-of-speech tags. It was immediately evident that replacing the PUNCT POS tag with the punctuation
character occurring at that position had a positive effect on the model’s performance. Beyond the implicit
increase in information offered by the actual character, it also reaffirms the importance of syntactic
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Figure 1: Final architecture

features in this task. The addition of dependency relation features, however, had a less-immediately
obvious impact. The RNN model saw a reduction in performance while the hybrid-CNN model fared
better. Upon further investigation, we determined that the input encoding scheme’s attempt to homogenize
feature vectors across disparate features, viz., combining sequential (token-level) features (token, POS)
with non-sequential (sentence-level) features (dependencies), actually hindered the recurrent model from
optimally exploiting the former. With this key insight, we were able to rearchitect our model to learn a
representation that composes both token and sentence-level features in an separate but efficient manner.

2.4 Final Architecture

Our final architecture is informed by the findings of our previous experiments. It accepts three inputs:
At the token-level, both token and part-of-speech tags (w/t punctuation) are used. Pre-trained GloVe
embeddings are used for tokens, while embeddings for POS tags are learned on-the-fly. The concatenation
of both embeddings is passed through two “feature extraction units” that consist of a BiILSTM (to
target sequence/global information) and a 1D-Conv + MaxPool layer (to target local information). At
sentence-level, dependency information is encoded as the concatenation of the embeddings of the head
word, modifier word and dependency label of each relation. This is connected to two stripped-down
“feature extraction units” without the BiLSTM layer, since dependency relations are sequentially
independent. Finally, the extracted representations of both token and sentence-level features are
concatenated and connected to a feed-forward layer and then a read-out layer.

The separation of feature-extraction at token and sentential levels allows their information to be combined
at a higher level in the network. And we indeed see a marked improvement when this model is trained
with dependency information. The model achieved a best F1-score of 0.76 during development.

3 Results & Discussion

The final model achieved a positive-class F1-score of 0.6851, ranking 47th out of 56 submissions for
the first subtask. While the model under-performed in a substantial departure from our expectations,
we identified factors that may have contributed to it. Since the gold-standard data for the test set was
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Value

Hyperparameter
Token-Level Sentence-Level
. Word 300
Embeddings
. POS 32
Dim
Dep. Label 32
LSTM Units 128, 64 -
Feature Extractor ]
] Conv. Filters 128, 64 64, 32
Units .
. . Conv. Kernel Size 3,3
(Unit 1, Unit 2) . .
MaxPooling Pool Size 2,2
L2 Regularization 3 0.001
Feed-forward Units 24

Table 2: Hyperparameters for the final model

not available at the time of publication, we based our statements on our analysis of the training corpus
and the prediction results of the test data. During training, we noticed that the number of unique terms
in the preprocessed corpus out-stripped the number of training samples (over 21K unique tokens in
approx. 17K sentences), over 75% of which occurred only once. This inevitably results in a large pool
of out-of-vocabulary words. Pre-trained word embeddings trained on a relatively small corpus would
be unable to model the vocabulary of the DEFT corpus completely, particularly as the latter mostly
comprises of domain-specific text. This could potentially be mitigated by restricting the vocabulary based
on term frequency count, but care must be taken not to restrict it too much as definitions, by definition, are
dependent on uniquely identifiable terms.

We also found several incongruities in the corpus where contradictions in annotations led to an
ambiguous ground-truth. Consider the following sentences from the training corpus: “Organisms
are individual living entities.” and “Organelles are small structures that exist within cells.” The first
sentence was annotated with the positive class (contains a definition) even though the latter was not.
Another similar albeit more ambiguous example: “Recall from The Macroeconomic Perspective that if
exports exceed imports, the economy is said to have a trade surplus.” and “If imports exceed exports,
the economy is said to have a trade deficit.” Here, the second sentence is tagged as containing a
definition even though the first is not. While some of these ambiguities can be attributed to how the
training data for the binary classification task is generated from the larger sequence-annotated corpus,
there are many other counter-examples where the rationale behind the annotation is unclear. Such
incongruities ultimately make it more challenging for the model to attain a clear and optimal generalization.

4 Conclusion

We presented our system for definition extraction whose pre-BERT methods achieved an admittedly
pre-historic F1-score of 0.6851 in Task 6: DeftEval, subtask 1. Future work could potentially include
the customization of the architecture to incorporate ensemble training, exploring the usage of more
task-specific cues such as topical information, and perhaps even becoming one with the BERT side and
using contextualized word embeddings — In light of our experiments with the combination of syntactic
and semantic features, the ability of the model to implicitly reproduce the classical NLP pipeline (Tenney
et al., 2019) makes it a natural fit for the task. However, not all languages and domains have the ample
amount of text resources required to (pre-)train large Transformer-based models such as BERT, not to
mention the increasing computational costs of training such models. Therefore, one should not lightly
dismiss the advantages of linguistically-motivated, task-specific approaches in favour of more general,
task-agnostic ones.

728



References

Luis Espinosa Anke and Steven Schockaert. 2018. Syntactically aware neural architectures for definition extrac-
tion. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 378-385.

Rosa Del Gaudio, Gustavo Batista, and Anténio Branco. 2014. Coping with highly imbalanced datasets: A case
study with definition extraction in a multilingual setting. Natural Language Engineering, 20(3):327-359.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Luis Espinosa-Anke, Horacio Saggion, and Claudio Delli Bovi. 2015. Definition extraction using sense-based
embeddings. In Gupta P, Banchs RE, Rosso P, editors. International Workshop on Embeddings and Semantics
(IWES’15); 2015 Sept 15; Alicante, Spain.[Place unknown]:[CEUR]; 2015.[6 p.]. CEUR.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735-1780.

Yiping Jin, Min-Yen Kan, Jun Ping Ng, and Xiangnan He. 2013. Mining scientific terms and their definitions: A
study of the ACL anthology. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 780-790.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Roberto Navigli and Paola Velardi. 2010. Learning word-class lattices for definition and hypernym extraction.
In Proceedings of the 48th annual meeting of the association for computational linguistics, pages 1318-1327.
Association for Computational Linguistics.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and Doug Downey. 2017. Definition modeling: Learning to
define word embeddings in natural language. In Thirty-First AAAI Conference on Artificial Intelligence.

Keiron O’Shea and Ryan Nash. 2015. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532-1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Sasha Spala, Nicholas A. Miller, Yiming Yang, Franck Dernoncourt, and Carl Dockhorn. 2019. DEFT: A cor-
pus for definition extraction in free- and semi-structured text. In Proceedings of the 13th Linguistic Annotation
Workshop, pages 124-131, Florence, Italy, August. Association for Computational Linguistics.

Sasha Spala, Nicholas Miller, Franck Dernoncourt, and Carl Dockhorn. 2020. Semeval-2020 task 6: Definition
extraction from free text with the deft corpus. In Proceedings of the 14th International Workshop on Semantic
Evaluation.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert rediscovers the classical nlp pipeline. arXiv preprint
arXiv:1905.05950.

Eline Westerhout. 2009. Definition extraction using linguistic and structural features. In Proceedings of the 1st
Workshop on Definition Extraction, pages 61-67. Association for Computational Linguistics.

729



