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Abstract

This paper presents the RGCL team submission to SemEval 2020 Task 6: DeftEval, subtasks
1 and 2. The system classifies definitions at the sentence and token levels. It utilises state-of-
the-art neural network architectures, which have some task-specific adaptations, including an
automatically extended training set. Overall, the approach achieves acceptable evaluation scores,
while maintaining flexibility in architecture selection.

1 Introduction

Definition Extraction refers to the task in Natural Language Processing (NLP) of detecting and extracting
a term and its definition in different types of text. A common use of automatic definition extraction is
to help building dictionaries (Kobylifiski and Przepiérkowski, 2008), but it can be employed for many
other applications. For example, ontology building can benefit from methods that extract definitions
(Hearst, 1992; Malaisé et al., 2007), whilst the fields of definition extraction and information extraction
can employ similar methodologies. It is therefore normal that there is growing interest in the task of
definition extraction.

This paper describes our system that participated in two of the three subtasks of Task 6 at SemEval
2020 (DeftEval), a shared task focused on definition extraction from a specialised corpus. Our method
employs state-of-the-art neural architectures in combination with automatic methods which extend and
clean the provided dataset.

The remaining parts of this paper are structured as follows. First, we present related work in the area of
definition extraction and the related field of relation extraction (Section 2). The three subtasks and the
dataset provided by the task organisers are described in Section 3. Next, we describe our system (Section
4), followed by the results of the evaluation (Section 5) and a final conclusion (Section 6).

2 Related Work

The first efforts related to definition extraction happened in the field of hypernym extraction, where
relations that usually indicate a definition were also dealt with. This includes the X is a type of Y relation,
such as salmon is a type of fish, where salmon is a hyponym of fish. Notable work includes Hearst (1992),
who automatically extracts hyponyms from large amounts of unstructured text using lexico-syntactic
patterns. Inspired by this approach, Malaisé et al. (2004) describe a similar method to mine definitions in
French, which are then classified in terms of their semantic relations, limited to the hypernymy - synonymy
relation. The approach is also used for building ontologies (Malaisé et al., 2007).

The importance of the semantic relations between words for pattern-based approaches to definition
extraction is highlighted in (Sierra et al., 2008). Here, the authors describe and explain definitional
verbal patterns in Spanish, which they also propose to use for mining definitions. The proposed system is
further presented in Alarcén et al. (2009) and is aimed at Spanish technical texts. The system uses the
aforementioned verbal patterns, as well as corresponding tense and distance restrictions, in order to extract
a set of candidate terms and their definitions. Once extracted, the system applies some filtering rules
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and a decision tree to further analyse the candidates. Finally, the results are ranked using heuristic rules.
All aspects of the system were developed by analysing the Institut Universitari de Lingiiistica Aplicada
technical corpus in Spanish, which is also used for evaluation.

Machine learning algorithms have also been used for definition extraction. Gaudio and Branco (2009)
describe an approach that is said to be language independent and test it with decision trees and Random
Forest, as well as Naive Bayes, k-Nearest Neighbour and Support Vector Machines using different
sampling techniques to varying degrees of success. Kobyliriski and Przepidrkowski (2008) process Polish
texts and use Balanced Random Forests, which bootstrap equal sets of positive and negative training
examples to the classifier, as opposed to a larger group of unequal sets of training examples. Overall,
while the approach is said to increase run time, it does bring minor increases in performance with some
fine-tuning.

Most recently, Spala et al. (2019) have created DEFT, a corpus for definition extraction from un-
structured and semi-structured texts. Citing some of the pattern-based approaches also mentioned here,
the authors argue that definitions have been well-defined and not necessarily representative of natural
language. Therefore, a new corpus is presented that is said to more accurately represent natural language,
and includes more messy examples of definitions. Parts of the DEFT corpus make up the dataset for this
shared task, which is described in more detail in the following section.

3 Subtasks and Dataset

The DeftEval shared task is split into three subtasks. The first is Sentence Classification, where the task is
to predict whether a given sentence contains a definition. Subtask 2 is a sequence labelling task, which
includes requires participants to assign BIO tags to indicate which tokens in a sentence belong to terms
and their definitions. Furthermore, the BIO tags are fine-grained, denoting whether terms and definitions
are primary, secondary (the second time a term or definition has been seen in a text), referential or ordered
(multiple terms that have inseparable definitions). The final subtask is Relation Classification which
requires to classify the relation between terms and their definitions. Included are the tags direct and
indirect definitions (links term or referential term to definition, respectively), supplements (links indirect
to direct definition), refers-to (links referential term/definition to term/definition) and AKA (links alias
term to term).

The corpus provided by the organisers is made up of parts of the DEFT corpus described in Spala
et al. (2019). This corpus has been compiled specifically for definition extraction tasks and is made up
of legal contracts (2.443 sentences) and textbook data (21.303 sentences). Citing a growing need for
definition extraction corpora, the creators also developed an annotation scheme that is specific to the task
of definition extraction.

4 Methodology

In this section we present the different approaches we employed for each subtask. The overall approach
is based on a neural network architecture, but each subtask requires different methods of preprocessing
the data, as well as task-specific tweaks to the data and architecture. Our implementation has been made
available on Github.!

4.1 Sentence Classification

This section describes the methodology employed for Subtask 1: Sentence Classification, as well as the
experiments carried out in order to boost performance. We first present the methods used to process and
extend the data, followed by a description of the main neural network architecture employed.

4.1.1 Data Processing and Cleaning

We first used the data converting python script that the organisers provided to convert the deft corpus in
to classification instances. After that we concatenated all the files in the training folder in to single file
and used it for training purposes while the concatenated file from the dev folder is used for evaluation

"https://github.com/tharindudr/defteval

718


https://github.com/tharindudr/defteval

purposes. As the Sentence classification task required only to predict 1 (contains a definition) or O (does
not contain a definition) it was feasible to perform some simple cleaning to increase the classification
performance without causing any side effects. Upon analysis of the data we found that many sentences
had some kind of numbering at the beginning, such as in the following example:

41. The evolution of various life forms on Earth can be summarized in a phylogenetic tree

([link])

Using a simple regular expression to match numbers and a punctuation mark at the beginning of a sentence,
we removed these character strings across all sets. We used the same approach for finding and deleting
character strings such as ({link]), which have been inserted by the task organisers to replace actual links to
websites (see also the above example). In cases where the link replacement formed part of the sentence
we did not perform a deletion:

Examples of some neutral atoms and their electron configurations are shown in [link].

This decision was made as it would otherwise leave sentences incomplete. After comparing the perfor-
mance of our algorithm on both cleaned and uncleaned text we observed a marginal increase of 0.01
across all evaluation metrics using on the best performing architecture. Other than this we did not carry
out any additional cleaning. This was also due to the fact that we use BERT embeddings, making it
unnecessary to remove any other characters, as it includes vectors for most characters.

4.1.2 Data Augmentation

In order to improve the performance of our classification we extend the training set automatically. To
achieve this, the sequence labelling part of the system (described in Section 4.2) was used to detect terms
in the training data. Where possible, we extracted the first sentence of the corresponding Wikipedia
articles for these terms by scraping Wikipedia. This is due to the fact that the first sentence usually defines
the term or item that the article is about. However, the approach had little impact on the performance of
the system, trading increases in precision for decreases in recall and decreasing the F1-score by about
0.02. What we learned is since the data augmentation process is completely automated and not manually
checked it introduces a certin level of noise to the dataset which result in decreasing the performance.

4.1.3 System Architecture

In order to determine the most suitable system architecture for the sentence classification task, we
experimented with three different neural architectures: Convolutional Neural Network (CNN) (Kim,
2014), Recurrent Neural Network (RNN) (Cui et al., 2018) and Transformer (Devlin et al., 2018). After
running various configurations, we found the Transformer architecture to perform best.

With the introduction of BERT (Devlin et al., 2018) transformer architectures have shown a massive
success in a wide range of NLP tasks. Transformer architectures have been trained on general tasks
like language modelling and then fine-tuned for classification tasks (Sun et al., 2019; Ranasinghe et al.,
2019b).

Transformer models take an input of a sequence and output the representation of the sequence. The
sequence has one or two segments that the first token of the sequence is always [CLS] which contains the
special classification embedding and another special token [SEP] is used for separating segments.

For text classification tasks, transformer models take the final hidden state h of the first token [CLS] as
the representation of the whole sequence (Sun et al., 2019). The [CLS] token was then fed in to a simple
softmax classifier to predict the label of the whole sentence: whether it contains a definition or not.

We fine-tuned all the parameters from transformer models as well as the softmax classifier jointly by
maximising the log-probability of the correct label. For training the model, we used a batch-size of eight,
Adam optimiser (Kingma and Ba, 2014) with learning rate 2e—5, and a linear learning rate warm-up
over 10% of the training data. The models were trained using only training data. Furthermore, they
were evaluated while training using an evaluation set that had one fifth of the rows in training data. We
performed early stopping if the evaluation loss did not improve over ten evaluation rounds. All the models
were trained for three epochs. We experimented with several transformer architectures like BERT (Devlin
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et al., 2018), XLNet (Yang et al., 2019), XLM (Conneau et al., 2019), RoBERTa (Liu et al., 2019) and
DistilBERT (Sanh et al., 2019). We used the HuggingFace’s implementation of the transformer models
(Wolf et al., 2019) and the pre-trained models available in the HuggingFace’s model repository?.

4.2 Sequence Labelling

This section describes the experiments we conducted for Subtask 2: Sequence Labelling. We first present
the data processing methods used, followed by the neural network architecture employed. Due to the
structure of the data and the way the annotations had to be made (CoNLL-like format) and evaluated, no
cleaning was performed for this task.

4.2.1 Data Processing and Augmentation

As a preliminary step, we concatenated all the files from the train folder in Deft corpus to a single file and
used it as the training file. Similarly we concatenated all the files from the dev folder in Deft corpus to a
single file and used it for evaluation purposes.

For this subtask also we experimented with data augmentation techniques. We tried a similar approach
as before, but with a bootstrapping focus: We used the classifier trained for this task to predict terms
and extracted the first sentence from each corresponding Wikipedia article. Exploiting the structure of
Wikipedia again, we simply automatically labelled the term in the corresponding sentence, therefore
providing extra examples of the terms being used in a sentence. However, like in the previous case this
step did not improve our results due to the noise it introduces. We also assume that the added terms were
always mentioned at the beginning of a sentence, therefore adding positional bias to the classifier.

4.2.2 System Architecture

We experimented with three different neural network architectures for the sequence labelling task: LSTM-
CRF (Lample et al., 2016), Stack-LSTM (Lample et al., 2016) and Transformer (Devlin et al., 2018). In
this task we also found that the Transformer architecture performs best.

Transformer architectures have proved effective in NER tasks (Devlin et al., 2018), which are also
sequence labelling tasks. In light of this, in this subtask, we implemented the approach suggested in
the first transformers paper - BERT (Devlin et al., 2018): transformer model combined with a token-
level classifier. After processing the sentence through the transformer model each word gets a vector
representation. We used this vector representation as the input to the token-level classifier over the label
set available for subtask 2. The token-level classifier consists of a dropout (Srivastava et al., 2014) and
a linear classifier. We fine-tuned all the parameters from transformer models as well as the token-level
classifier jointly by maximising the log-probability of the correct label.

For training the model, we used a batch-size of eight, Adam optimiser (Kingma and Ba, 2014) with
learning rate 1le—5, and a linear learning rate warm-up over 6% of the training data. The models were
trained using only training data. Furthermore, they were evaluated while training using an evaluation set
that had one fifth of the rows in training data. Similar to the subtask 1, we performed early stopping if the
evaluation loss did not improve over ten evaluation rounds. All the models were trained for three epochs.
We experimented with several transformer architectures: BERT (Devlin et al., 2018), XLNet (Yang et
al., 2019), XLLM (Conneau et al., 2019), RoBERTa (Liu et al., 2019) and DistilBERT (Sanh et al., 2019).
We used the HuggingFace TokenClassification interface (Wolf et al., 2019) and the pre-trained models
available in the HuggingFace model repository>.

We also experimented with adding a Conditional Random Field (CRF) layer (Zheng et al., 2015) after
the output of the Transformer. However evaluation of several configurations showed that adding the CRF
layer does not improve the results. Therefore, we did not pursue these experiments any further.

5 Evaluation

In this section we present the evaluation results that were obtained during testing. We also provide a brief
look at the final submission results of the shared task.

https://huggingface.co/models
Shttps://huggingface.co/models
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5.1 Sentence Classification Results

Table 1 shows the evaluation of the different architectures we developed for the sentence classification task
using the development set. We have also included baseline results which was performed using a Naive
Bayes bag of words approach. It is clear that, while marginal, XLNet performs best overall. Interestingly,
we compared BERT-Large against XLNet-Base, meaning that our best architecture was much less resource
intensive to run.

For the final task evaluation using the test set, we achieved an F1-Macro score of 0.7885, placing us
25th out of 56 participants. Compared to our evaluation results, this is a relatively high loss. We assume
that our model has been largely overfitted in to the training set we used.

Not Definition Definition Weighted Average
Model P R F1 P R F1 P R F1 | F1 Macro
CNN 0.78 0.73 0.72]0.76 0.71 0.75]0.74 0.77 0.74 0.76
RNN-BILSTM | 0.76 0.71 0.74 | 0.68 0.74 0.72 | 0.75 0.72 0.73 0.75
BERT 090 0.88 0.89|0.81 0.79 0.80| 0.86 0.86 0.86 0.84
XLNet 091 090 090 0.82 0.80 0.81]0.87 0.88 0.87 0.86
Baseline 0.89 054 0.68 | 049 0.87 0.63]0.66 0.68 0.66 0.67

Table 1: Results for Subtask 1 For each model, Precision (P), Recall (R), and F1 are reported on all classes,
and weighted averages. Macro-F1 is also listed (best in bold).

5.2 Sequence Labelling Results

Table 2 shows the evaluation results for the different architectures we tested for the Sequence Labelling
task. As before, we see XLLNet with the best results, and again see that the less resource intense base
version is almost on par with the large version. It should also be noted that the best results were achieved
with shortened maximum sequence lengths, down from 128 to 64.

In the official evaluation on the test set we ranked 28th of 51 with an F1-score of 0.4872. This shows a
significant drop in performance, possibly due to overfitting.

Model P R F1
BERT 071 0.74 0.73
ROBERTu 0.67 0.70 0.69

XLNet - Base | 0.71 0.75 0.73
XLNet - Large | 0.72 0.76 0.74

Table 2: Results for Subtask 2 For each model, Precision (P), Recall (R), and F1 are reported overall (best
in bold).

6 Conclusion

We have presented the system the RGCL team has prepared for the SemEval-2020 Task 12. The design
of the system allows for easy switching of different architectures to accommodate the needs of the task
at hand. For this task, we have shown the Transformer architecture using XIL.Net is the most successful
when working with limited resources. It has also been shown that data augmentation techniques we
experimented, while not detrimental to overall performance, do not necessarily improve performance. In a
shared task setting, the effect of the extended data from Wikipedia was not useful, however, for a wider
approach with higher recall, this could be more helpful.

We also tried to participate in the final subtask, Relation Classification. However, due to time constraints,
we were not able to achieve a valid submission for the this subtask. We approached it as a sequence
pair classification task and employed a Siamese Neural Network which was shown to perform well
in sequence pair classification tasks (Mueller and Thyagarajan, 2016; Ranasinghe et al., 2019a). The
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architecture we employed is similar to the architecture presented in (Reimers and Gurevych, 2019).
When two sequences have a relation, we extracted the sequences and provided them as the input for
the Siamese transformer architecture. Then we used the objective function suggested as classification
objective function in (Reimers and Gurevych, 2019) and optimised the cross-entropy loss. Due to the
complexity of this task, we managed to run only a baseline of the proposed architecture which achieved
very low evaluation scores on the development data. Therefore, we did not have a submission for this
task and do not present any results here. In future, we hope to carry out further experiments with Siamese
transformer architectures for relation classification tasks.

Going forth, we also wish to use this system for further tasks across further languages. While we may
not achieve the best performance, the system utilises realistic system resources and is therefore very
versatile. This is particularly with regard to the first subtask, where the difference to the best team is
around 0.09, whereas for subtask two the best team is 0.36 ahead of us, indicating that our system is not
competitive. It is possible to extend these experiments to a different domain easily using a pretrained
transformer model in that domain given that a corpus similar to deft corpus is available in that domain.
For an example, our system should be easily adoptable to biology domain using the BioBERT pretrained
transformer model (Lee et al., 2019) and a deft corpus like corpus on biology domain.
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