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Abstract

This paper describes the system and results of our team participated in SemEval-2020 Task4:
Commonsense Validation and Explanation (ComVE), which aim to distinguish meaningful nat-
ural language statements from unreasonable natural language statements. This task contains
three subtasks: Subtask A—Validation, Subtask B—Explanation (Multi-Choice), and Subtask C-
Explanation (Generation). In these three subtasks, we only participated in Subtask A, which
aims to distinguish whether a given two natural language statements with similar wording are
meaningful. To solve this problem, we proposed a method using a combination of BERT with
the Bidirectional Gated Recurrent Unit (Bi-GRU). Our model achieved an accuracy of 0.836 in
Subtask A (ranked 27/45).

1 Introduction

In recent years, the introduction of commonsense into natural language understanding systems has re-
ceived more and more research attention. Commonsense Validation and Explanation describes whether
the natural language statement is consistent with the facts and explains the reasons for its against com-
mon sense. Specifically, the purpose of the commonsense verification is to determine that the natural
language statement is reasonable and meaningful. This task involves commonsense, understanding, and
reasoning, so it is very important for a system to be able to accurately distinguish between meaningful
natural language statements and unreasonable natural language statements. In SemEval-2020 Task 4:
Verification and Interpretation of Common Sense (Wang et al., 2020). The organizer has designed three
subtasks. Subtask A selects from two natural language statements with similar grammatical structures
(one of which is meaningful and one of which is not). It requires the model to determine which of the
two statements violates commonsense; Subtask B is to find the key reason why a given statement violates
commonsense from three options, this task is a multiple-choice; Subtask C requires the system to gen-
erate the reason why this statement violates commonsense. Among these three subtasks, Subtask A and
Subtask B are evaluated by accuracy, and Subtask C is evaluated by BLEU. For Subtask A, we exper-
imented with different neural network-based models, such as Bidirectional Long Short-Term Memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997), Bidirectional Gated Recurrent Unit (Bi-GRU) (Bah-
danau et al., 2014), and bidirectional encoder representation from Transformers (BERT) (Devlin et al.,
2018). We found that BERT performs best on the validation set. Therefore, we chose to use BERT to
combine different models to optimize the system.

The rest of the paper is structured as follows. Section 2 introduce the related work of ComVE; section
3 introduce the data description and methods; in section 4, we analyze the experimental results; in section
5, we summarize and look forward to future work.
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2 Related Work

Commonsense verification aims to require models to determine whether natural language statements
are meaningful. One of the key issues in how to build an effective classifier is to find suitable fea-
tures. Through the introduction of word embedding technology, better performance can be achieved. A
common way of a neural network is to add more layers in order to learn high-level features, and the
stacked residual LSTM model can solve the problem of gradient disappearance and deviation between
layers (Wang et al., 2018a). Commonsense reasoning is a challenging task for modern machine learning
methods (Zhong et al., 2018; Talmor et al., 2019). Many commonsense representations and reason-
ing processes have explored and developed large knowledge bases of commonsense. The JHU Ordinal
Common-sense Inference (JOCI) (Zhang et al., 2017) aims to mark the plausibility of human response
in certain circumstances from 5 (very likely) to 1 (impossible). The story cloze test (also known as ROC
story) compares the true ending of the story to the incredible false ending (Mostafazadeh et al., 2016).
Some researchers also investigate ways to use common sense to answer questions. CommonsenseQA
(CQA) (Talmor et al., 2019) requires crowd workers to create questions from ConceptNet (Speer et al.,
2017). Talmor et al. (2019) show that using Google search to extract context from the first 100 result snip-
pets selected for each question and answer does not greatly improve. CQA is even trained using the most
advanced reading comprehension model BiDAF ++ (Seo et al., 2017), which also adds a self-attention
layer and Elmo representation (Peters et al., 2018). (Camburu et al., 2018) generates interpretation and
prediction of natural language inference problems.

A survey of commonsense data sets and more common natural language data sets show that there are
already some data that focus on non-linguistic world knowledge verification (Wang et al., 2018c) or lim-
ited attributes or actions of world knowledge (Forbes and Choi, 2017). The Winograd Schema Challenge
(WSC) (hector j levesque et al., 2012; Morgenstern and Ortiz, 2015) is a widely used and important task
that requires more commonsense knowledge. In recent years, some large-scale knowledge resources of
commonsense reasoning have also been released, which may be helpful for the development of com-
monsense reasoning tasks. Common sense Question Answering (CQA) is a multiple-choice question
and answer datasets proposed for the development of natural language processing (NLP) models with
common sense reasoning capabilities (Talmor et al., 2019). Sap et al. (2019) proposes a huge knowledge
map of commonsense reasoning, which has nine if-then relationship variables, including causes, effects,
etc. Techniques based on Language Modeling, such as GPT and BERT models, can achieve human-level
performance on these datasets (Radford et al., 2018; Devlin et al., 2019).

3 Methodology and Data

3.1 Data description

In this task, we first make a simple statistics on the dataset, as shown in Table 1.

Task Training set Validation set Test set
Subtask A 10000 997 1000
Subtask B 10000 997 1000
Subtask C 1074 997 1000

Table 1: Data statistics table

id sent0 sentl
1 He drinks apple. He drinks milk.
A niece is a person. A giraffe is a person.
10 Eggs eat kis on Easter.  Kids find eggs on Easter.

Table 2: Some instance of Subtask A in the training set
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As can be seen from Table 1, for the training set, there are 10,000 against commonsense sentences and
10,000 correct sentences in Subtask A. Table 2 shows some instances in the dataset of Subtask A, we can
see that each row in the dataset contains 3 fields: id, sentO, sentl, which are the id of the instance, and
two input sentences.

3.2 Methodology

In this task, we have experimented with some methods. In this section, we introduce our methods in
detail. We report the performance of these methods on the validation set. The experimental results show
that BERT shows the power of the pre-trained model, and on the basis of which fine-tuning can improve
the effect, so we try to combine other methods with the BERT model. Finally, the experimental results
prove that the combination of BERT with Bi-GRU is the best effect on the validation set.

Bi-LSTM  We use Bidirectional LSTM as a baseline model to compare results. Bi-LSTM (Hochre-
iter and Schmidhuber, 1997) is the abbreviation of Bidirectional Long Short-Term Memory, which is a
combination of forward LSTM and backward LSTM. The LSTM model can better capture long-distance
dependencies, but it can’t encode the information from the back to the front. Bi-LSTM can better capture
bidirectional semantic dependencies.

Bi-GRU Chung et al. (2014) proposed an LSTM variant called gate recursive unit (GRU), GRU is
to combine the forget gate and input gate in LSTM into update gate. It makes GRU simpler and more
efficient than traditional LSTM models (Wang et al., 2018b). We use the structure of a bidirectional
GRU to encode vectorized text to establish this contextual connection. Bi-GRU is a neural network
model consisting of unidirectional GRU with opposite directions and whose output is jointly determined
by the states of these two GRUs. The input of the forward GRU is the forward sequence of the input of
the previous layer, and the input of the backward GRU is the reverse sequence of the input of the previous
layer. At each moment, the input provided two GRUs with directions opposite at the same time, and the
output is decided by the two unidirectional GRUs jointly. The simple structure of Bi-GRU is shown in
Figure 1. The current hidden layer state of Bi-GRU is jointly determined by three parts: current input x,
output m of forward hidden layer state and output h;_; of backward hidden layer state at -/ moment:

hi = GRU (x4, hi_1) )
hi = GRU (x4, hi 1) ©)
he = (7« Ty (3)

where the GRU() function represents a non-linear transformation of the input word vector, and encodes
the word vector into the corresponding GRU hidden layer state. h; and h; respectively represent the
forward hidden state and the backward hidden state corresponding to the bidirectional GRU at t moment;
h; express the vector that contact ﬁt) with E

Figure 1: Bidirectional GRU (Bi-GRU) structural model diagram

BERT The full name of BERT is Bidirectional Encoder Representation from Transformers (Devlin
et al., 2018). Its main model structure is composed of the encoder stack of Transformer. The main
innovations of the model are in the pre-train method, that is, Masked LM and Next Sentence Prediction
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are used to capture the representation of words and sentences respectively. Since the dataset in SemEval-
2020 Task 4 is small, we input the dataset into a pre-trained BERT model. The overall architecture
diagram of the model is shown in Figure 2. The fine-tuning BERT of text pair classification in Figure 2
is different from the single text classification in terms of input representation. The BERT input sequence
explicitly indicates the input of a text pair, where the special classification mark “(C'LS)” is used for
sequence classification, and the special classification mark “(SEP)” marks the end of a single text or
separates a pair of text. As shown in Figure 2, in the text classification application, the BERT of the
special classification mark “(C'LS)” denotes to encode the information of the entire input text sequence,
and as the representation of the input text, it will be input into a small Multi-Layer Perceptron(MLP)
composed of fully connected (Dense) layers to output the distribution of all discrete label values. Finally,
a softmax layer is used for the final output. However, in order to obtain more abundant feature vectors,
we join up the Bi-GRU layer after BERT.

Label

Bi-GRU

Rep<cls> Rep:i Rep2 Rep<sep> Rep3 Rep4 Rep; Rep<sep>

BERT
[ [ I [ [ I [ [

<CLS> Tokenl Token2 <SEP> Token3 Token4  Token5 <SEP>
N ’ S

7

~ |

~ ’ S 1 ,
Text sequence 1 Text sequence 2

Figure 2: The overall architecture diagram of the model

4 Experiment results

4.1 Evaluation

In this task, Subtask A and Subtask B are evaluated by accuracy, while Subtask C is evaluated by BLEU.
For Subtask A in which we are participant, we evaluate it by accuracy. We introduce a classic confusion
matrix to help us understand accuracy, as shown in Figure 3. Accuracy considers all samples, which

Predictive Value

True Value Positive Negative
Negative FP TN

Figure 3: Confusion matrix
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refers to the ratio of the number of correctly predicted samples to the total number of predicted samples.
The accuracy rate reflects the correct predictions made by the model. The higher the accuracy, the better
the classifier. The calculation formula is as follows:

TP +TN

A =
Y = TP Y TN+ FP+ FN

“)

4.2 Experiment setting

In our experiment, we used BERT-base-uncased as our pre-trained models, and the batch size is set to
8, the epoch is set to 3, and the learning rate is set to e-5. For the Bi-GRU layer, we set the hidden unit
to 512, added Dropout layers and BatchNormalization layers, and the rate of dropout layer is 0.35. The
activation function of the final output layer is sigmoid, which is used for binary classification. The loss
function of this model is binary cross-entropy, and the optimizer is adam. In our model, the input form of
our model is (CLS) + sentence 1+ (SEP) + sentence 2+ (SEP), where (C'LS) represents the special
token of the classification task, its output is the pooler output of the model, and (SEP) represents the
separator, sentence 1 and sentence 2 are the input text of the model. The experimental results show that
the model converges fast after 3rd epoch and the loss on the validation set is small.

4.3 Result

In this section, we report the results on the validation set and the official test data set. In Table 3, we
list the performance of the three basic models participating in the selection of Subtask A on the left, in
which BERT achieved the best performers, and the accuracy reached 88.7%. In order to obtain richer
feature vectors, we consider joining up RNN structure. we list the performance of the two combined
models on the right, in which BERT+Bi-GRU achieved the best performers, and the accuracy reached
92.3%. It can be seen from Table 3 that the performance of the combined model is significantly higher
than the basic model. Based on the verified results, we chose the combination of BERT with Bi-GRU as
the final submitted model. In Table 4 shows the top three in the official ranking and the result we finally
submitted.

Basic model Acc(Validation set) | Combination model Acc(Validation set)
Bi-LSTM 82.5 BERT+Bi-LSTM 90.8
Bi-GRU 84.3 BERT+Bi-GRU 92.3

BERT 88.7

Table 3: Model results on validation set

Team Name Subtask A Accuracy
hit_itnlp 97.0(1)
ECNU_ICA 96.7(2)
iie-nlp-NUT 96.4(3)
YNU_OXZ 83.6(27)

Table 4: Official leaderboard results

5 Conclusion

This year we participated in the sub-task A for Commonsense Validation and Explanation (ComVE),
which is to verify which of the two sentences is against commonsense. This paper proposes a model
combining BERT with Bi-GRU. Using the BERT model to extract more suitable features, and a com-
bination model with a layer of Bi-GRU behind BERT is used for classification. Although the overall
performance of our model is not ideal, the preliminary results show what we should do next. In fu-
ture research, we will use multiple methods to improve our model and will consider introducing k-fold
cross-validation to integrate the results to improve model performance.
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