TR at SemEval-2020 Task 4: Exploring the Limits of
Language-model-based Common Sense Validation

Don Teo
Center for Al and Cognitive Computing
Thomson Reuters
Toronto, Canada
don.teo@tr.com

Abstract

In this paper, we present our submission for subtask A of the Common Sense Validation and
Explanation (ComVE) shared task. We examine the ability of large-scale pre-trained language
models to distinguish commonsense from non-commonsense statements. We also explore the
utility of external resources that aim to supplement the world knowledge inherent in such language
models, including commonsense knowledge graph embedding models, word concreteness ratings,
and text-to-image generation models. We find that such resources provide insignificant gains to
the performance of fine-tuned language models. We also provide a qualitative analysis of the
limitations of the language model fine-tuned to this task.

1 Introduction

The task of assimilating general world knowledge from textual data for the purpose of commonsense
reasoning and inference has been a long-standing challenge in natural language understanding (Davis,
1990; Schubert, 2002). A general approach to this problem that has gained recent popularity is the use
of neural-network-based language models (LM) (Bengio et al., 2003). Such models, when trained on
massive amounts of diverse text corpora, have been found to capture implicitly a remarkable amount of
commonsense knowledge (Trinh and Le, 2018). Moreover, recent advances in training deep contextualized
word representations using language-model-type objectives over large text corpora have substantially
improved the state-of-the-art performance on a wide variety of natural language understanding tasks (Peters
et al., 2018; Radford, 2018; Devlin et al., 2019; Yang et al., 2019; Raffel et al., 2019), including an even
greater ability to capture commonsense knowledge (Zhou et al., 2019b; Porada et al., 2019).

Despite this success, a significant gap remains between the performance of such pre-trained LMs and
human-level performance on commonsense reasoning tasks. In fact, there is evidence suggesting that
current models fail to learn factual knowledge effectively (Poerner et al., 2019) and have difficulty with a
variety of basic reasoning abilities necessary for commonsense inference (Talmor et al., 2019a; Kassner
and Schiitze, 2019). This motivates us to explore supplementary resources aimed at augmenting the world
knowledge inherent in pre-trained LMs.

In this paper, we explore the ability of a state-of-the-art pre-trained LM in tackling the ComVE subtask
A (Wang et al., 2020a). In particular, given a pair of sentences, we evaluate the model’s ability in
identifying which sentence least agrees with common sense. We consider the model from both a language
modeling and a supervised learning perspective. Moreover, we explore the utility of additional resources
meant to augment the perceptual world knowledge of language models in solving this task. Finally, we
provide a categorization of the types of sentences that our best performing model struggles against.

2 Related Work

A variety of datasets have been created to examine a system’s general commonsense knowledge and
inference capability through such tasks as anaphora resolution (Levesque et al., 2012; Sakaguchi et al.,
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2019) and question answering (Talmor et al., 2019b; Huang et al., 2019; Zellers et al., 2018). Certain
tasks have attempted to measure commonsense knowledge specifically pertaining to the physical (Bisk et
al., 2020), temporal (Zhou et al., 2019a), and causal (Gordon et al., 2012) aspects of reasoning.

Recent approaches to tackling these challenges have focused on methods to inject external knowledge
into pre-trained LMs. The methods vary by the choice of knowledge sources and the training objec-
tive (Zhang et al., 2019; Lauscher et al., 2019; Levine et al., 2019; Peters et al., 2019; Xiong et al., 2019;
He et al., 2019; Wang et al., 2020b). Complementary to such approaches, methods have been developed
to automatically expand the coverage of existing commonsense knowledge bases (CKB) (Li et al., 2016;
Saito et al., 2018; Bosselut et al., 2019; Zou, 2020). Due to the immense number of relations that would
be needed to capture the wide variety of commonsense knowledge, He et al. (2020) proposed a method
to “conceptualize” explicit relations into broader, more abstract concepts. In our work, we examine the
benefit of using external resources such as CKB-enhanced word embeddings as simple, additional features
to a model, rather than attempting to infuse the knowledge within the pre-trained LM. We also consider
more perception-based resources, such as word concreteness ratings and text-to-image generation models.

3 System Descriptions

3.1 Masked language model

As a baseline system, we use the pre-trained ROBERTay srg g (Liu et al., 2019) model as a masked
language model (MLM). For a given sentence s, we measure the probability of each token in s conditioned
on all other tokens in the sentence. We then consider the average p,.,y Or minimum p,,,;,, token probability
across the entire sentence. When evaluating the pair of sentences (s1, s2), the sentence with the higher
probability is taken to be the commonsense statement. We denote this approach as MLM,,, and MLM,,,,
when using pg.g and ppin, respectively, as the comparator.

3.2 Feature-based model

The second system we consider uses a set of features that attempts to augment the MLLM. In addition to
using the difference Apgyg (Apmin) of the average (minimum) token probability scores between the pair
of sentences, we build additional features that target specific differences between the two sentences and
that leverage external knowledge resources.

3.2.1 Token difference perplexity

We consider specifically the subset of tokens that differ between s; and so. For example, in the pair
of sentences (He poured orange juice on his cereal., He poured milk on his cereal.), we are interested
primarily in the MLLM probability for the words milk and orange juice. Since the difference can span
multiple tokens in a given sentence, we consider the perplexity P, (s} of the tokens remaining in
sentence s; after taking the setwise token difference with sentence s;, where {s;} is the set of tokens in
si. We take as a feature the difference AP = Py 1\ (55} — Pso1\{s1) Of the two perplexities.

3.2.2 Concrete word similarity

Concreteness — the degree to which a concept refers to a perceptible entity — has been one of the
most extensively studied variables in the field of psycholinguistics. For example, it has been observed
that abstract and concrete concepts are represented and processed differently in the brain (Crutch and
Warrington, 2004) and exhibit differences in terms of recall/memory (Walker and Hulme, 1999; Allen and
Hulme, 2006; Romani et al., 2008; Miller and Roodenrys, 2009) and word association capability (Groot,
1989). Concrete concepts are an important aspect in commonsense knowledge and can, a priori, be
particularly challenging for a model trained purely with textual data to learn about and represent effectively.

There have been multiple efforts to collect concreteness ratings for a large vocabulary (Paivio et
al., 1968; Wilson and Division, 1997). Most recently, Brysbaert et al. (2014) collected a dataset of
concreteness ratings for about 40K words and two-word phrases. We use this collection and consider all
word and phrases as concrete if they have an average concreteness rating of at least 4.0, which reduces the
list to about 9200 words and phrases.
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The ConceptNet Numberbatch! (Speer et al., 2017) word embedding set combines the commonsense
knowledge captured by the ConceptNet knowledge graph with existing word embedding sets learned
through distributional semantics, such as word2vec and GloVe. We leverage these embeddings in the
following way. For a given sentence, we measure the average cosine distance do,. over all pairs
of concrete words within the sentence. The intuition is that a commonsense statement should, at a
minimum, have concrete words that are more semantically related. Continuing with the example given in
Section 3.2.1, the concrete words for the two sentences are (He poured orange juice on his cereal., He
poured milk on his cereal.). One expects the words milk and cereal to be closer in embedding space than
Jjuice and cereal, not merely because the latter two words appear more often together than the former, but
also because of the ConceptNet relation ReceivesAction(milk, eaten with cereal). We use as a feature the
difference in d..,. values between the two sentences.

3.2.3 Text-to-image generation

In addition to purely text-based resources, we explore the utility of incorporating world knowledge
and common sense through visual perception. Specifically, we consider a state-of-the-art text-to-image
(TTI) generation model that has been trained over a large corpus of captioned images. Descriptions of
real-world images are a form of text that may be under-represented in the corpora that have been used
for LM pre-training (e.g. stories, news and encyclopedia articles). More importantly, images contain
commonsense information about the physical world that is often not explicitly stated in text (e.g. the
relative sizes of objects). The intuition is that a TTI model would find it more difficult to generate an image
for sentences that defy the constraints of its world model compared to the sentences that obey common
sense. For example, consider the the pair of sentences (He picked up a cup of orange juice., He picked up
a cup of an elephant.). A useful TTI model would be able to generate an image of a cup given the first
sentence more easily than when given the second sentence. A recently proposed measure of generated
image quality is the Semantic Object Accuracy (SOA) (Hinz et al., 2019). In essence, the objects that
are mentioned in the sentence ought to be present in the image, as determined by an appropriate object
detector. We therefore consider the following approach:

1. Given TTI model ¢ and sentence s, generate N images for the sentence: ¢(s)1, ¢(S)2, ..., (s)N

2. Compute the object-category-averaged SOA over the generated images

N
1 1
SOAC=2) + Z Iy (¢(s)is ) (1)
ceC =1
where C' is the number of object classes present in the sentence, and Iy~ is the indicator function for
whether image ¢(s); contains an object of class ¢ as determined by the object detection model Y.

In the computation of SOA-C, we restrict C' to the objects that are common to both sentences so that
differences in the object class generation ability of the TTI model are factored out. The sentence with the
higher value of SOA-C would be considered the more commonsense statement. We use as a feature the
difference Asoa_c in SOA-C scores between the two sentences.

There are, however, significant limitations to the above approach. Crucially, a TTI model is limited by
its training corpus in the types of objects that it can reasonably generate. Currently, most TTI models are
trained over the Microsoft Common Objects in Context (COCO) dataset (Lin et al., 2014), which covers a
set of only 80 object categories. In the ComVE task, only about 10% of sentence pairs have a common
COCO object in both sentences. Moreover, the generation capability of the model depends strongly on
the object class. For example, cats and dogs can be generated with much better accuracy than cups and
bottles. Nevertheless, we consider the usefulness of this feature for this small subset of sentence pairs.

In our experiments, we use the DM-GAN network pretrained over the COCO dataset as the TTI model
¢ (Zhu et al., 2019) and generate N = 3 images per sentence. For the object detection model Y, we
use the YOLOV3 model trained over the same dataset (Redmon and Farhadi, 2018). Figure 1 shows two
generated images for a sample sentence pair.

"https://github.com/commonsense/conceptnet-numberbatch
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Figure 1: Sample generated images for The cat 00 o1 0z 03 04 05 08 a7

mean(|SHAP value|) {average impact on model output magnitude)

ran away from the dog (left) and The house ran
away from the dog (right). In the left image, both a
dog and a cat were identified by the object detector.
The SOA-C scores for the two sentences were 1/3
and 0, respectively (N = 3, C' = 1 (dog)).

Figure 2: Feature importance for the GBDT model.

3.24 GBDT Model

The above features are combined with a Gradient Boosted Decision Tree (GBDT) trained using the
XGBoost library (Chen and Guestrin, 2016). Figure 2 illustrates the relative feature importance of the
model using SHAP values (Lundberg and Lee, 2017; Lundberg et al., 2020). The most important features
are the difference in p,,;, scores and the difference in perplexity scores of differing tokens. As can be
seen, the difference in SOA-C scores was an ineffective feature. Even within the 10% of sentence pairs
that contain a common COCO object, the difference in SOA-C scores exhibited a negligible correlation
(< 0.05 Pearson coefficient) with the prediction label. Thus, for this particular task, this feature had no
impact to the final test set predictions of the model.

3.3 Fine-tuned LM

The final approach we consider is fine-tuning a pre-trained LM for this particular task. We use again
the RoOBERTaz, 4 p; i pre-trained model for this purpose. Each sentence pair (s1, s2) is fed directly into
the model in the same manner as any other type of downstream sentence-pair task. The output of the
special [CLS] input token is fed into a multilayer perceptron as a classification task. We also consider a
second GBDT model (referred to below as the GBDT-RoBERTa model) that uses the fine-tuned RoOBERTa
model’s classification score as an additional feature to the features described above.

4 Results and Discussion

Table 1 summarizes the results of the various approaches and compares with the performance of the top
submission for the task. Overall, we find that the simple MLLM-based approaches achieve a reasonable
baseline performance on this task. The addition of targeted features in the GBDT model gives an
improvement of several percentage points on top of the best baseline. The fine-tuned RoBERTa model
shows a substantial performance gain over the GBDT model. Finally, the GBDT-RoBERTa model achieves
a marginally higher score on the test set over the fine-tuned RoBERTa model alone.

Method Dev Acc. Test Acc.
MLM,,4 70.3 72.2
MLM,in 77.2 75.3
GBDT (official submission) 80.8 79.7
RoBERTa 95.2 92.7
GBDT-RoBERTa 95.0 92.9
Team hit_itnlp (15¢ place submission) - 97.0

Table 1: Accuracy on the development and test sets for each system considered.
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To provide more insight into the errors the fine-tuned ROBERTa model makes, we categorize the
incorrectly labeled sentence pairs depending on the key difference between the sentences. We consider
the following broad types:

e Quantity: Statements that require an assessment of numeric values.

e Physical perception: Statements requiring perceptual knowledge (e.g. the relative size of objects) or
general science knowledge (e.g. every person has a heart).

e Temporal perception: Statements dealing with the duration of events, temporal ordering/causation,
or other time-related knowledge (e.g. when an event occurs).

e Definition: Statements that require knowledge of the definition of a particular word.
e Negation: One of the statements contains a negation.

e Data quality: Sentence pairs that were found to be grammatically awkward or where it was not
immediately obvious which statement was the commonsense statement.

Table 2 gives a breakdown of the proportion of errors found within the development set?. We find that the
bulk of the errors required some aspect of physical or temporal world knowledge.

We also compare several characteristics between the set of correct predictions S, and incorrect
prediction Sy within the development set. In terms of the negation category, the proportion of sentence
pairs for which at least one sentence contains a not lemma was substantially larger in Sy (12.8%)
than in S , (2.6%), indicating some difficulty in interpreting negation statements. In terms of concept
concreteness, we find that both sets show a similar distribution in the average number of unique concrete
terms (2.4 in S , vs 2.1 in Sx). This suggests that the model had no particular difficulty in representing
commonsense knowledge involving concrete terms. Finally, in terms of the lexical similarity of the
sentence pair, we find that incorrect predictions exhibited a slightly higher average number in the setwise
symmetric difference of tokens ({s1} © {s2}) between the two sentences than correct predictions (3.6 in
S/ vs 4.4 in SX)'

Category Proportion Example (s, s2)

Physical 38% (Babies are born naked., Babies are born with clothes on.)

Temporal 19% (He lived without Sara for about a year., He lived without food for about
a year.)

Quantity 9% (You have three fingers on one hand., You have five fingers on one hand.)

Negation 13% (Trees can sometimes live in saltwater., Trees can not live on the ground.)

Definition 11% (Pork comes from cows., Pork comes from pigs.)

Data Quality 10% (A bald man brushed his hair every day., A bald man washed his hair
every day.)

Table 2: Proportion of question categories in Sy for the RoBERTa fine-tuned model.

5 Conclusion and Future Work

In this paper, we evaluated the performance of a state-of-the-art pre-trained LM on the task of common
sense validation. We also explored the usefulness of external resources meant to supplement the implicit
commonsense knowledge of the LM. We found that a subset of these resources provide value to a system
relying only LM probabilities, but give negligible improvement to an LM fine-tuned to the task. Further
experiments are needed to evaluate the performance of pre-trained LMs on this task when they are
explicitly adapted with external commonsense knowledge bases. Additionally, we leave as future work
the study of TTI models with improved object coverage and generation quality that may eventually add
value to the subspace of common sense validation that depend significantly on visual world knowledge.

The categories are not mutually exclusive; we compute the overall proportion by evaluating the categories in the order or
Data Quality, Negation, Definition, Quantity, Temporal, and Physical.
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