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Abstract

In this paper, we explore solutions to a common sense making task in which a model must discern
which of two sentences is against common sense. We used a pre-trained language model which
we used to calculate perplexity scores for input to discern which sentence contained an unlikely
sequence of tokens. Other approaches we tested were word vector distances, which were used to
find semantic outliers within a sentence, and siamese network. By using the pre-trained language
model to calculate perplexity scores based on the sequence of tokens in input sentences, we
achieved an accuracy of 75 percent.

1 Introduction

Much research has been conducted on Natural Language Understanding (NLU) and models based on
neural networks have achieved state-of-the-art results in reading comprehension . However, results in
tasks regarding common sense making do not rival those of human performance, such as in inference
tasks in which state-of-the-art models score upwards of 80 percent (Devlin et al., 2019).

As the organizers of the SemEval 2020 Commonsense Validation and Explanation (Wang et al., 2020)
task highlighted, pinpointing exactly why an utterance is against common sense is not a trivial undertak-
ing. Advances in this area could lead to improvements in NLU.

We participated only in Task A, which was determining which of two sentences was against common
sense. For example, given the input “He poured milk on his cereal” and “He poured orange juice on his
cereal” we would identify “He poured orange juice on his cereal” as the sentence against common sense.
Task A was evaluated by accuracy. All data was in English.

We used a pre-trained language model to calculate the probability of the next word in a sequence
to produce perplexity scores for each of the sentences in the input pairs. A higher perplexity score
meant a lower overall probability of the words occurring in this order, thus being more likely against
commonsense.

We also attempted to solve this task with word vector distances, attempting to find an outlier among
tokens in each input sentence, and with a siamese network, which was trained as a feature embedder for
valid sentences.

2 Background

The data consisted of pairs of English sentences, one of which made sense and the other did not. The
desired output was the index of the sentence against common sense. For example, the model would take
the input sentences “He poured orange juice on his cereal.” and “He poured milk on his cereal.” and
output a 0. The official training data from the ComEV organizers was a collection of 10,000 pairs of
sentences.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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2.1 Pre-Trained Models

Though there are applications that intend to achieve machine sense-making via designing conceptual
knowledge bases (Periñán Pascual and Arcas Túnez, 2007; Liu and Singh, 2003), language models pre-
trained on large corpora are still widely applied as they demonstrate high scores of accuracy (Wang et
al., 2018; Wang et al., 2019).

When the fine-tuned ELMo was applied to a SemEval 2018 common sense dataset, it outperformed
previous state-of-the-art performance by scoring 74.1 percent accuracy (Wang et al., 2019). These results
inspired us to use the power of language models as the main force behind our model.

3 System Overview

We used three distinct and separate approaches to solve this task. Our main approach is based on the
probability of the next word in the sequence. After analyzing the data, we realized the structure of the
input was such that the perplexity score of each sentence would be a strong indicator of its validity. We
made use of a pre-trained neural network, the OpenAI GPTLM Head Model (Radford et al., 2018b),
from the Transformers library from HuggingFace1 to calculate perplexity scores. This model is based on
the OpenAI GPT model (Radford et al., 2018a), a causal (unidirectional) transformer pre-trained using
language modeling on a large corpus with long range dependencies, the Toronto Book Corpus (Zhu et
al., 2015). The OpenAI GPT Head Model consists of the basic transformer (Vaswani et al., 2017), but
with a language modeling head on top (linear layer with weights tied to the input embeddings) and is
therefore powerful at predicting the next token in a sequence. Our classification pipeline was rather small
and straight-forward. We loaded the model with pretrained weights and fed one tokenized sentence as
input. As output we took the prediction scores of the language modeling head (e.g. the scores for each
vocabulary token before a SoftMax layer that chooses the most probable word). The scores for both
sequences of a pair were then compared, the larger one labeled as invalid.

Another approach was to calculate distances between word vectors of words inside one sentence. The
general idea is simple: as language models trained on large corpora are increasingly better at embedding
words in semantically meaningful vectors, we tried to use the multidimensional representation of big
word embeddings to find semantic outliers in the sentence. If a sentence contained such an outlier, it
is marked as the invalid one. Only sentences where the keyword (differentiating word between the two
sentences) was a subject or object (direct and indirect) were used. The BERT base-uncased language
model (Devlin et al., 2019) and the last four of its layers computed the word embeddings. We used the
spaCy parser (Honnibal and Montani, 2017) to first create a dependency tree of the sentence, a simple
function then extracted the root of the sentence and the desired subjects and objects. Next, we computed
the cosine distance between the word vectors in the sentence and averaged the score over the number of
tokens. The smaller this score, the more likely the sentence to be sensical.

Born out of the word-vector approach discussed above, our final approach was a siamese network
with which our goal was to train it as a feature embedder for valid sentences. From a selection of the
provided data we crafted anchor sentences through the BERT Masked LM model (Devlin et al., 2019).
The keyword was masked and of the ten most probable predicted words the most viable (same category of
part of speech) were used. This was done automatically for all sentences, therefore there is the possibility
that some novel sentences are not viable as sensible anchors. A review of all the anchors was not feasible.
We implemented a custom variant of the triplet loss based on vector distances, which should push the
model to create context embeddings that achieve a higher cosine similarity for the valid sentences to the
anchor than the invalid ones.

4 Experimental Setup

We limited preprocessing because of the terseness of input data. The shortest input string was of length
two. The longest input string was 23 words long. The average length of input was 7.7 words. We decided
to alter the data as little as possible in the preprocessing stage because of our next-token-prediction

1https://huggingface.co/transformers/
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approach. Input without stop words, for example, would have resulted in lower perplexity scores from
the GPT Head Model (Radford et al., 2018b), as they would be more unlikely to appear in the corpus the
model was trained on. Additionally, some of the input strings in the training set were against common
sense because they were grammatically incorrect, and we opted to preserve the original structure of the
input so that these sentences would result in a higher perplexity score from the model.

We performed a contraction mapping with the use of the pycontractions package2 to ensure proper
tokenization. Task A was evaluated on accuracy.

5 Results

The GPT model achieved an accuracy of 75 percent, which places us 25th among 28 teams, who submit-
ted results in the post-evaluation phase. Teams placed 15th to 26nd, achieved accuracies between 80 and
90 percent. Teams 14th and higher achieved accuracies above 92 percent, the highest being 96.7 percent.

Model Accuracy
GTP Head Model 75%

Word Vector Distance 61%
Siamese Network 51%
Random Baseline 50%

Table 1: Various models we used to solve Task A and their accuracies on the development dataset.

5.1 Error Analysis

Though the initial score of 75 percent was encouraging, after an error analysis it is our conclusion that
this model alone could not reach a higher accuracy without the use of additional modules or methods.
Our model performs a superficial evaluation of the validity of input sentences, measuring how likely
each word is to appear after another based on a corpus, and does not delve into semantics, which led
to erroneous labeling of sentences that were not against common sense but unusually worded or used
infrequently occurring words.

We performed the analysis on randomly selected wrongly predicted sentences which were representa-
tive of the various sentence structures across the whole dataset. An error analysis over the entire set of
incorrect predictions is beyond the scope of this paper. As a result, we cannot provide exact numbers or
percentages of the error frequencies.

Unusual, but not wrong
We noticed a high frequency of input sentences that were not ungrammatical nor nonsensical, but phras-
ing or peculiar words that lay outside of what could be considered common parlance. For example,
“Sewerage is very important for cities,” employs the less popular “sewerage” over “sewage.” Far more
common were oddly phrased inputs, such as “I use swords”, “A niece is a person”, “I read stars”, or “Peo-
ple write with pens.” These unusual, though grammatically correct, inputs were difficult for the model
because the training data were books, which no doubt included utterances that would be considered
common parlance.

Erroneous input
Some of the input sentences were simply ungrammatical. For example, a possessive “‘s” is employed
instead of a pluralizing “s,” there was subject-verb disagreement or incorrect spellings present in the
input.

Both Wrong/Right
There were also instances of input in which both sentences could be against common sense or with it.
For example, “Sugar is sweet for humans.” and “Sugar is bad for humans.”

2pycontractions v.2.0.1. https://pypi.org/project/pycontractions/
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Last word changed
We found these sentences to be particularly tricky for our model. The probability of these sentences are
identical until the last word of the sentence, making this essentially a unigram probability problem. For
example with the sentence pair, “The baby played with fire” and “The baby played with blocks.” the
correct label comes down to the probability that “blocks” or “fire” follows “with” because the rest of the
sentence would have an identical score up to the point of derivation.

Multiple differences
Unlike the rest of the input sentences, which swapped one word for another or saw the flipping of sub-
ject and object, sentences which employed multiple differences across sentence 0 and sentence 1 were
difficult for the model to handle.

For example, in “People should wear sunglasses when they are short-sighted” and “People should
wear glasses when they are myopic” we see the problematic word “sunglasses” in sentence 0 replaced in
sentence 1 and a synonym for “short-sighted” is also used.

While a pattern can be seen in the common erroneous predictions made by our model, the underlying
problem is that the analysis of sentences was superficial.

For the word vector distance approach, a couple of factors were observed during our experiments.
Obviously the way of finding related words to compare inside the sentence is significant. We believe that
with a more sophisticated method to find relevant tokens to compare our keywords to this score could be
improved. Problematic for this approach are of course sentences in which only word order is changed
to create a nonsensical sentence. We also found that some word vectors measured a near distance that
we would intuitively not have guessed. This could be due to the context of learned information from the
BERT model, meaning that some particular themes could be overrepresented when applied to the context
of a general discourse. Intuitively in the sentences “I put a turkey in the fridge” and “I put an elephant
in the fridge”, “elephant” and “fridge” should measure a longer distance than their counterparts “turkey”
and “fridge”. If the model (the word embedder) was trained on large amounts of wildlife data rather than
American tradition, it would score “elephant” and “fridge” closer together.

One key problem with the siamese network was the anchor sentences, which require a good amount
of effort and time investment if done properly. Another origin of low performance is possibly due to the
variety of sentence structure and the very limited data two sentences offer in comparison to document
similarities (from which inspiration for this approach was drawn). With many sentences that share a
similar structure and length, the model seemed to perform well for a subset of the overall dataset, but
lost progress when encountering a novel structure. We theorize therefore that the model couldn’t learn to
differentiate between the two classes invalid and valid, but rather between different sentence structures.

6 Discussion

The main observation we drew from the results is that our model is not able to handle input sentences
that are outside of common parlance. Our model also had difficulty correctly labeling sentences with
spelling or grammatical errors i.e “dog’s” instead of “dogs.”

On the other hand, our model is able to distinguish very well the nonsensical sentence in pairs in which
a reasonable noun is exchanged for an outrageous one. For example, “book” was replaced with “tiger”
in the sentence “I read a ”.

We came to the conclusion that, if we were able to repeat this task, we would use a hybrid approach.
Rather than relying on statistics, however powerful and effective, we would supplement our process
with a discriminative function. Our model could also benefit from the utilization of a semantic analysis.
With the use of, for example, FrameNet (Baker et al., 1998), a lexical database of annotated English
examples of how words are used in actual context from the International Computer Science Institute
at UC Berkeley, we could establish that, using the above example, a tiger is an animal, and therefore
something that cannot fit in with the semantic framework for reading.
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7 Conclusion

By using the GPT Head Model from OpenAI (Radford et al., 2018b) to calculate perplexity scores for
input sentence pairs we were able to achieve an accuracy of 75 percent, placing us 28th of 28 teams in the
task. Our model had difficulty with nuances and only captured superficial representations of meaning.
This system could be improved through the addition of discriminative processing and semantic analysis.
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