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Abstract

This paper describes the system proposed by the Random team for SemEval-2020 Task 1: Unsu-
pervised Lexical Semantic Change Detection. We focus our approach on the detection problem.
Given the semantics of words captured by temporal word embeddings in different time periods,
we investigate the use of unsupervised methods to detect when the target word has gained or lost
senses. To this end, we define a new algorithm based on Gaussian Mixture Models to cluster the
target similarities computed over the two periods. We compare the proposed approach with a
number of similarity-based thresholds. We found that, although the performance of the detection
methods varies across the word embedding algorithms, the combination of Gaussian Mixture with
Temporal Referencing resulted in our best system.

1 Introduction

The recent development in word embeddings, and their increasing capability to capture lexical semantics
has inspired the application of these methods to new tasks and introduced new challenges. The diachronic
analysis of language is one of these linguistic tasks which has benefited from the advantages of these
new methods, i.e. the capability to build semantic representations of words by skimming through large
corpora spanning multiple time periods. SemEval 2020 Task 1 (Schlechtweg et al., 2020) addresses the
current lack of a systematic approach for the evaluation of automatic methods for diachronic analysis by
proposing a common evaluation framework that comprises two tasks and covers corpora written in four
different languages, namely German (Zeitung, 2018; Textarchiv, 2017), English (Alatrash et al., 2020),
Latin (McGillivray and Kilgarriff, 2013), and Swedish (Borin et al., 2012). Given two corpora C1 and C2

for two periods t1 and t2, Subtask 1 requires participants to classify a set of target words in two categories:
words that have lost or gained senses from t1 to t2 and words that did not, while Subtask 2 requires
participants to rank the target words according to their degree of lexical semantic change between the
two periods. We tackle the problem of automatically detecting lexical semantic changes with approaches
that rely on temporal word embeddings. These approaches create a word vector representation for each
time period by exploiting a shared semantic space. Similarity measures can then be used to capture the
extent of a word semantic change between two periods. Some temporal word embedding techniques
adopt a two-step approach, where they first learn separate word embeddings for each time period and then
align the word vectors across multiple time periods (Hamilton et al., 2016). Other dynamic approaches
incorporate the alignment directly into the learning stage via the optimisation function (Tahmasebi et al.,
2018). Dynamic word embeddings can be further categorised according to the constraint imposed on the
alignment. The explicit alignment adopts a conservative approach to the semantic drift that a word can
undergo by posing a limit to the distance between the word vectors belonging to the two temporal spaces.
In the implicit alignment, there is no need for explicit constraint since the alignment is automatically
performed by sharing the same word context vectors across all the time lapses.

In this work, we focus on dynamic word embeddings by exploring methods based on both explicit, such
as Dynamic Word2Vec (Yao et al., 2018), and implicit alignment, namely Temporal Random Indexing
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(Basile et al., 2015) and Temporal Referencing (Dubossarsky et al., 2019). We analyse the use of different
similarity measures to determine the extent of a word semantic change and compare the cosine similarity
with Pearson Correlation and the neighborhood similarity (Shoemark et al., 2019). While these similarity
measures can be directly employed to generate a ranked list of words for Subtask 2, their adoption in
Subtask 1 requires further manipulation. We introduce a new method to classify changing vs. stable
words by clustering the target similarity distributions via Gaussian Mixture Models. We describe the
embedding models and the clustering algorithm in Section 2, while Section 3 provides details about
the hyper-parameter selection. Section 4 reports the results of the task evaluation followed by some
concluding remarks in Section 5.

2 System description

We model the problem of automatic detection of semantic change by exploiting temporal word embeddings
Ei : w → Rd that project each word w in the vocabulary V into a d-dimensional semantic space. Given
two different time periods t1 and t2, we create two embeddings E1 and E2. We investigate several models
to compute temporal word embeddings:

Dynamic Word2Vec (DW2V) (Yao et al., 2018) simultaneously learns time-aware embeddings by
aligning and reducing the dimensionality of time-binned Positive Point-wise Mutual Information
matrices.

Temporal Random Indexing (TRI) (Basile et al., 2015) implicitly aligns co-occurrence matrices by
using the same random projection for all the temporal bins.

Collocations extracts for each word and each time period the set of relevant collocations through the
Dice score. As similarity function, we measure the cosine similarity between the sets of collocations
belonging to the two different time periods. More details are reported in Basile et al. (2019).

Temporal Referencing (TR) (Dubossarsky et al., 2019) used only in the post-evaluation, it consists in a
modified version of Word2Vec Skipgram that adds a temporal referencing to target vectors, keeping
context vectors unchanged.

A similarity measure between vectors in the two temporal spaces is adopted to compute the extent of
the semantic drift of the target words. We explored several similarity measures:

Cosine similarity (CS) is the cosine of the angle between two vectors.

Pearson correlation (PC) measures the linear correlation between two variables, in case of centred
vectors (with zero means) is equivalent to the cosine similarity.

Neighborhood similarity (NS) computes two k-neighbour sets nbrsk(E1(w)) and nbrsk(E2(w)) and
the union set U = nbrsk(E1(w)) ∪ nbrsk(E2(w)). Two second-order vectors, one for each word
representation uj , are created. The components of ui are the cosine similarity between the vector vj1

and the i-th element of U : uji = cos(vj ,U(i)). The Neighborhood similarity is the cosine similarity
between the second-order vectors. In all the experiments we set k = 25.

2.1 Subtask 2

In Subtask 2, we use one of the three similarity measures (CS, PC, NS) to compute the set of target
similarities S = {sim(E1(w), E2(w)) | w ∈ T}. Then, we rank the target words according to the
distance, computed as: 1− | sim(E1(w), E2(w)) |.

1Where vj is the vector representation for the word generated by Ej and j is the time period.
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2.2 Subtask 1: Gaussian Mixture Clustering

Subtask 1 requires a further step: given S, the set of target similarities, we need to predict the target
labels. The aim is to assign either of the two classes, 0 (stable) or 1 (change), to each target word of
a given language. Once we compute the set of target similarities S, we want to find a way to assign
the corresponding label. We assume that low similarities suggest changing words and high similarities
indicate stable words.

Gaussian Mixture Models (GMMs) allow us to build probabilistic models for representing the Gaussian
distribution of stable and changing targets. We use GMMs2 to model the density of the distributions of the
similarities of targets as a weighted sum of two Gaussian densities (Huang et al., 2017):

f(S) =
M∑

m=0

πmφ(S|µm,Σm) (1)

where M is the number of mixture components, φ(S|µm,Σm) is the Gaussian density with mean vector
µm and covariance matrix Σm, and πm is the prior probability for the m-th component. Additional
constraints can be applied to the covariance matrix in Eq. 1. In our experiments, we allow each component
to have its own covariance matrix.

For our purpose, we speculate that the distribution of target similarities is a mixture of two densities, i.e.
representing the stable and changing words. Consequently, we fix the number of the mixture components
in the GMMs to two. We initially randomly assign a label (stable/changing) to each density distribution.
Let µ0 and µ1 be the means of the two Gaussians associated with the “stable” and “changing” labels
respectively. If µ0 < µ1 (i.e. the similarity mean of the distribution labelled as “stable” is lower than the
mean of distribution labelled as “changing”), we invert the labels. Alg. 1 can be used to properly label
each word of the target vocabulary.

Algorithm 1: Assign labels
input :S
output : labels
N (µ0, σ0),N (µ1, σ1), labels←− GaussianMixtures(S);
if µ0 < µ1 then

labels←− 1− labels;
end

In order to set the best parameters for each language and model, we rely on the GMMs log likelihood,
which is generally used for estimating the clusters quality:

`(θ | S) = log
M∑

m=0

πmφ(S | µm,Σm) (2)

where θ are the parameters of the GMM. For each language, we select the best model configuration
to submit at the challenge using the GMMs log likelihood `(θ | S). This means that hyper-parameters
across different languages are tuned using GMMs log likelihood. We improperly use this approach for
choosing parameters across different models (different sets of similarities S), as we do not have validation
set for tuning the parameters. We will investigate this limitation as future work. The selected models and
hyper-parameters are reported in Tab. 1. In particular, we use cosine similarity, Pearson correlation and
Neighborhood similarity for computing the targets similarities inOverallCS ,OverallPC andOverallNS

runs, respectively. In DW2V and TRI runs we use always cosine similarity.

2https://scikit-learn.org/stable/modules/generated/sklearn.mixture.
GaussianMixture.html
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3 Experimental Setup

In all the runs, we do not pre-process data and we use a context window size of 5 while analyzing
sentences. The TR model3 has been adopted into its original implementation4, as the TRI5 approach and
DW2V 6 one. For runs involving TRI , we experimented with a varying vector size from 200 to 1, 000.
Moreover, we investigated (1) the initialization of the count matrix at time j with the matrix at time j − 1,
(2) the contribution of positive-only projections, and (3) the application of PPMI weights, as explained in
QasemiZadeh and Kallmeyer (2016). For DW2V , we use the parameter setting proposed in Yao et al.
(2018). We set λ = 10, τ = 50, γ = 100, ρ = 50 and experimented with a number of iterations from one
to five. As vocabulary, we kept the top 50,000 most frequent tokens for both TRI and DW2V . In the
TR runs, we set the vector size to 100, and we experimented eight iterations for English and Latin, and
four for German and Swedish. We use 20 negative samples, keeping only the tokens that occur at least 10
times. All the other parameters used for configuring the models are reported in Tab. 1.

Run Configuration English German Latin Swedish

OverallCS
Model DW2V Collocation DW2V DW2V

Parameters it=3 - it=3 it=4

OverallPC
Model DW2V DW2V DW2V DW2V

Parameters it=3 it=4 it=3 it=4

OverallNS
Model DW2V DW2V DW2V DW2V

Parameters it=3 it=1 it=3 it=4

TRI Parameters
k= 400 k=1000 k=1000 k=1000

pw=False pw=True pw=True pw=True

DW2V Parameters it=3 it=4 it=3 it=4

Table 1: Hyper-parameters and models selected for each run. it is the number of iterations, k is the
embedding size, pw the use of PPMI weights

4 Results

SemEval 2020 Task 1 provide three baselines, namely Freq. Baseline, which uses the absolute difference
of the normalized frequency in the two corpora as a measure of change; Count Baseline, which implements
the model described in (Schlechtweg et al., 2019); and Maj. Baseline that always predicts the majority
class. Tab. 2 reports the main results obtained by the different models. It shows the results obtained from
the official submissions at the challenge and the results obtained by the TR approach performed during
the post-evaluation phase. The results obtained for Subtask 1 are reported using the accuracy metric, while
for Subtask 2, the Spearman’s rank-order correlation coefficients are used.

Considering the results of the evaluation phase, the models show inconsistent behaviors. TRI showed
the best performance when considering “all the languages” for both Subtasks, although in Subtask 1
it is not able to overcome Count Baseline and Maj. Baseline. Focusing on Subtask 1, if we consider
each language in isolation, we see that DW2V gives the best results for English7 while OverallPC is
our best system for German language, although it is not able to overcome Count Baseline. Collocation
is the best system for Latin (although outperformed by Freq. Baseline) while TRI is our best system
for Sweden language. In Subtask 2, the best English score was reported by OverallNS . OverallCS

(Collocation) performed the best in German language. For Latin and Sweden, TRI provided the best
results, and interestingly, it is one of the few systems that did not generate a negative correlation, although
outperformed by CountBaseline in Latin language.

At the end of the challenge, when the labelled test set was released, we performed more experiments
reported in the post-evaluation row. In this phase, we run an additional system, TR, which outperformed

3We add this model during the post-evaluation.
4https://github.com/Garrafao/TemporalReferencing
5https://github.com/pippokill/tri
6https://github.com/yifan0sun/DynamicWord2Vec
7Please, note that for EN, LA and SW OverallCS and DW2V coincide
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all the previous reported approaches, including all baselines. The only exception is for Latin, in which
for Subtask 1 Freq. Baseline achieves 0.650 accuracy in comparison to 0.525 of TR. Comparing TR
and TRI , which are both based on implicit alignment, the former is a prediction-based model while the
latter is a count-based one. Moreover, TR creates a temporal word embedding only for the target words
rather than for the whole vocabulary. Consequently, this results in better word embeddings for all the
words in the vocabulary that do not have a temporal reference, because they are represented by using all
occurrences in C1 and C2. We suppose that these differences allow TR to achieve better results than the
other models.

Subtask 1 Subtask 2

System All
Lang. EN DE LA SV All

Lang. EN DE LA SV

Freq.Baseline 0.439 0.432 0.417 0.650 0.258 -0.083 -0.217 0.014 0.020 -0.150
CountBaseline 0.613 0.595 0.688 0.525 0.645 0.144 0.022 0.216 0.359 -0.022
Maj.Baseline 0.576 0.568 0.646 0.350 0.742 NaN NaN NaN NaN NaN

OverallCS 0.509 0.622 0.500 0.400 0.516 0.111 0.252 0.415 -0.183 0.041
OverallPC 0.533 0.595 0.646 0.375 0.516 0.056 0.272 0.168 -0.135 -0.080
OverallNS 0.508 0.568 0.542 0.375 0.548 0.035 0.298 -0.059 -0.179 0.078
Collocation 0.513 0.486 0.500 0.550 0.516 0.273 0.144 0.415 0.194 0.340
DW2V 0.541 0.622 0.625 0.400 0.516 0.098 0.252 0.366 -0.183 -0.041
TRI∗ 0.554 0.486 0.479 0.475 0.774 0.296 0.211 0.337 0.253 0.385

TR
(post-eval.)

0.704 0.703 0.812 0.525 0.774 0.496 0.304 0.722 0.395 0.562

Table 2: Results obtained by our models during the official competition and during the post-evaluation
phase. For the Subtask 1 the results represent the accuracy score. Spearman’s rank-order correlation
coefficients are used for the Subtask 2. TRI∗ is the official submission in the evaluation phase since it
obtained the best score in the Subtask1.

Subtask 1 Subtask 2

System All
Lang. EN DE LA SV All

Lang. EN DE LA SV

TRI .55 .49 .48 .47 .77 .30 .21 .34 .25 .38
NLPCR .58 .73 .54 .45 .61 .29 .44 .45 .15 .11
UWB .69 .62 .75 .70 .68 .48 .37 .70 .25 .60
Jiaxin & Jinan .66 .65 .73 .70 .58 .52 .32 .72 .44 .59
Life-Language .68 .70 .75 .55 .74 .22 .30 .21 -.02 .39
RPI-Trust .66 .65 .75 .50 .74 .43 .23 .52 .46 .50

Table 3: Best results obtained in Subtask 1 for each language: TRI is compared with results submitted by
all participants to the SemEval-2020 Task 1.

Tab 3 reports the best results for each language among all participants to Task 1. UWB obtains the best
result for German language, tied with Life-Language and RPI-Trust, and the best average result over all
languages. Our official submission TRI gives the best result in the Swedish language, whereas Jiaxin
& Jian results first for Latin and NLPCR for English language. In Subtask 2, NLPCR and UWB obtain
the best results for English and German languages respectively, confirming results obtained in Subtask 1.
Concerning the Latin language, also Jiaxin & Jian confirm results obtained in Subtask 1, outperformed
only by RPI-Trust, while in Swedish UWB obtain the best result. In general, each system achieved the
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best performance in one language while performing differently on the remaining others.
During the post-evaluation, we decided to investigate also the role of GMMs for class labeling (Sec. 2).

We compared GMMs with semi-manual thresholds µS , µS − σS , µS + σS and Winsorizing (Kokic and
Bell, 1994) computing µS and σS on data provided for Subtask 1, where µS and σS are the mean and
the standard deviation computed on the similarity set S. Figure 1 reports the different accuracy scores
obtained by the five methods for the TRI , Collocation, DW2V , TR approaches. The scores for the
GMMs strategy are close to those obtained by µS for TRI and Collocation. While GMMs outperforms
µS + σS in every run, µS − σS seems to work better than GMMs except that in TR. Winsorizing works
better than GMMs in TRI and Collocation. GMMs outperforms Winsorizing in DW2V and TR. These
results are not clear enough to advocate for a specific threshold. Consequently, further analysis will be
part of future work in order to understand what is the better threshold that could be included in the GMMs
process.

TRI Collocation DW2V TR
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Figure 1: Accuracy scores in Subtask 1 using different class labeling strategies: GMMs, µS , µS − σS ,
µS + σS and Winsorizing using mean and standard deviation.

5 Conclusions

We described the runs we submitted to the SemEval-2020 Task 1: Unsupervised Lexical Semantic Change
Detection. This paper has two main contributions. We reported a comparison of some of the most recent
approaches to model lexical semantic change with temporal word embeddings, and we experimented with
an automatic unsupervised procedure to classify changing and stable words. Results show that implicit
alignment works generally better in modelling the lexical semantic change. In future works we plan to
carry out an analysis on unlemmatised corpora and gauge a better understanding of the impact of Gaussian
Mixture Clustering for unsupervised lexical semantic change detection.
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Linguistics, Tübingen. Narr.

Behrang QasemiZadeh and Laura Kallmeyer. 2016. Random positive-only projections: PPMI-enabled incremen-
tal semantic space construction. In *SEM 2016 - 5th Joint Conference on Lexical and Computational Semantics,
Proceedings, pages 189–198.

Dominik Schlechtweg, Anna Hätty, Marco Del Tredici, and Sabine Schulte im Walde. 2019. A wind of change:
Detecting and evaluating lexical semantic change across times and domains. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 732–746.

Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, and Nina Tahmasebi. 2020.
SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. In To appear in Proceedings of
the 14th International Workshop on Semantic Evaluation, Barcelona, Spain. Association for Computational
Linguistics.

Philippa Shoemark, Farhana Ferdousi Liza, Dong Nguyen, Scott Hale, and Barbara McGillivray. 2019. Room
to Glo: A Systematic Comparison of Semantic Change Detection Approaches with Word Embeddings. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 66–76. Association for
Computational Linguistics.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. 2018. Survey of computational approaches to lexical semantic
change. arXiv preprint arXiv:1811.06278.

Deutsches Textarchiv. 2017. Grundlage für ein referenzkorpus der neuhochdeutschen sprache. herausgegeben
von der berlin-brandenburgischen akademie der wissenschaften. http://www.deutschestextarchiv.
de/.

Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. 2018. Dynamic word embeddings for evolving
semantic discovery. In WSDM 2018 - Proceedings of the 11th ACM International Conference on Web Search
and Data Mining, volume 2018-Febua, pages 673–681.

Berliner Zeitung. 2018. Diachronic newspaper corpus published by staatsbibliothek zu berlin. http://zefys.
staatsbibliothek-berlin.de/index.php?id=155.


