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LIMSI - CNRS, Univ. Paris-Sud, France
syrielle.montariol@limsi.fr

Lidia Pivovarova
University of Helsinki, Finland

lidia.pivovarova@helsinki.fi

Elaine Zosa
University of Helsinki, Finland

elaine.zosa@helsinki.fi
Abstract

This paper describes the approaches used by the Discovery Team to solve SemEval-2020 Task 1 -
Unsupervised Lexical Semantic Change Detection. The proposed method is based on clustering
of BERT contextual embeddings, followed by a comparison of cluster distributions across time.
The best results were obtained by an ensemble of this method and static Word2Vec embeddings.
According to the official results, our approach proved the best for Latin in Subtask 2.

1 Introduction

Each word has a variety of senses and connotations, constantly evolving through usage in social interactions
and changes in cultural and social practices. Identifying and understanding these changes is important for
linguistic research and social analysis, since it allows the detection of cultural and linguistic trends and
possibly predict future changes. Detecting these changes can also be used to improve many NLP tasks,
such as text classification and information retrieval.

The SemEval-2020 Task 1 — Unsupervised Lexical Semantic Change Detection (Schlechtweg et al.,
2020) deals with detection of semantic change in temporal corpora containing texts from two distinct time
periods in four languages: English, German, Latin and Swedish. The challenge defines two subtasks:
Subtask 1 is binary classification, i.e., to determine whether a word has changed or not; SubTask 2 aims at
ranking a set of target words according to their rate of semantic change.

In this paper, we present the approaches used by the Discovery Team to tackle these two subtasks. The
Discovery Team qualified as 11th and 5th on Subtasks 1 and 2, respectively, and also proved the best
for Latin language in Subtask 2. Our systems leverage the transformer-based BERT model to generate
contextualised embeddings for each word usage. Then these embeddings are aggregated into meaningful
time-specific word representations. We explore different aggregation techniques, such as clustering
(k-means and affinity propagation) and averaging. We also combine BERT-based representations with
static Word2Vec embeddings1.

2 System Overview

2.1 Word Representation
In order to derive meaningful temporal representations for each target word, we adapted the methodology
proposed in Martinc et al. (2020a) to the multilingual setting of the SemEval-2020 Task 1. The core
component of our approach is the use of BERT (Bidirectional Encoder Representations from Transformers),
a pretrained masked language model based on the transformer architecture (Devlin et al., 2019). We
use specific models for each language—for English: bert-base-uncased model, for Swedish: bert-base-
swedish-uncased (https://github.com/af-ai-center/SweBERT), for German: bert-base-
german-cased (https://deepset.ai/german-bert), for Latin: bert-base-multilingual-uncased

∗All authors contributed equally to this research.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1Code for the experiments is available under the MIT license at https://github.com/smontariol/
Semeval2020-Task1.
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model—all with 12 attention layers and a hidden layer of size 768. German is the only language for which
we use a cased model since most target words are nouns, which are capitalized in German. The only
model available for Latin is a multilingual BERT model trained on 104 languages, including Latin.

For each language, the model is fine-tuned for five epochs on the task’s corpus, as advised by Martinc
et al. (2020a). This fine-tuning is unsupervised, i.e., a masked language model objective is used in the
fine-tuning step (Devlin et al., 2019) in order to adapt each model to a specific corpus.

The fine-tuned models are used to generate token embeddings. The corpus for each language is split
into two periods and the fine-tuned models are fed with sentences containing one or more target words
from the sub-corpus. The sentences are split into tokens, and an embedding of dimension 768 is generated
for each token by summing the last four encoder output layers of BERT, as advised by recent studies
which confirm the fact that semantic features are captured in higher layers of BERT (Jawahar et al., 2019).

Note that byte-pair tokenization (Kudo and Richardson, 2018) in some cases generates tokens that
correspond to sub-parts of words. To generate embedding representations for the target words split
into sub-parts, we concatenate the embeddings of each byte-pair token constituting a word. After this
procedure, we obtain a contextual embedding representation for each target-word usage, together with the
time period each word usage representation belongs to.

In addition to context-dependent embeddings, we generate static word representations by training
a 300-dimensional Word2Vec model using the skip-gram architecture with negative sampling (SGNS)
(Mikolov et al., 2013) for each time slice. We align the embeddings from the different time slices using the
Orthogonal Procrustes (OP) method as in Hamilton et al. (2016). We also applied pre- and post-processing
steps such as mean-centering and vector normalisation, as recommended in Schlechtweg et al. (2019) 2.

2.2 Measures of Semantic Change
We use two methods to aggregate contextual embeddings from BERT: averaging and clustering. The
methods were introduced and compared in our previous work (Martinc et al., 2020a; Martinc et al.,
2020b).

Averaging is a simple aggregation approach where all target-word usage representations from a given
time period are averaged. A quantitative estimate of semantic change for each target word is measured by
computing the cosine distance between two averaged time-specific representations of the word.

Clustering of word usage representations results in sets of word usages, where each set is expected to
correspond to a single word sense or a specific context. We create two time-specific cluster distributions
by counting the number of cluster members for each time period and creating a vector of cluster counts for
each cluster within a time period. Then the Jensen-Shannon divergence (JSD) between two period-specific
distributions is used to measure the semantic change, as in Martinc et al. (2020a).

We use two clustering techniques, affinity propagation (Frey and Dueck, 2007) and k-means3. Affinity
propagation has been extensively used in the literature for semantic tasks such as word sense induc-
tion (Alagić et al., 2018). It works by exchanging messages between data points until a high-quality set of
exemplars, i.e. members of the input set that are representative of clusters, is obtained. A big advantage of
this method is that it considers all the data points as potential cluster centers and therefore does not require
the number of clusters to be defined in advance. K-means is a very popular clustering method and has
been shown to perform well for the semantic change detection task (Giulianelli et al., 2020). Contrarily to
affinity propagation, it requires to define the number of clusters in advance. We try several values of k; the
highest accuracy for this task is obtained with k = 5.

To obtain a measure of semantic change using static embeddings, we measure the cosine distance
between the aligned embedding representations of the same word from two time slices.

2.3 Subtask 1: Binary Classification
In order to determine whether a target word has changed or not, we experiment with two distinct methods,
thresholding using stopwords and identification of period-specific clusters.

2We trained Word2Vec using the code from https://github.com/Garrafao/LSCDetection
3We use the Scikit-learn implementations (https://scikit-learn.org/stable/modules/clustering.

html) with default parameters, except for the number of clusters for k-means, for which we tried several options.



69

English Latin Swedish German
Number of stopwords 109 334 78 142

Mean JSD
stopwords 0.181 0.210 0.355 0.328
targets 0.239 0.264 0.460 0.384

Table 1: Number of stopwords used and average semantic change score (JSD) for target words and
stopwords.

2.3.1 Thresholding Using Stopwords
We want to find the best threshold in the ranked list of target words by relying on the assumption that
stopwords—words that are very frequent in a language and play primarily auxiliary roles—undergo a low
semantic change.

Though stopwords are more stable than most words of the dictionary, they can still change their
meaning due to the grammaticalisation processes, i.e. when a previously meaningful word looses most of
it functions except for auxiliary ones. For example, the English stopword hence used to have a concrete
deictic meaning ”from here” (e.g. ”hence we go”) but nowadays it is used only to connect two propositions.
Since not all stopwords are stable, finding an appropriate threshold is not straightforward.

It should be noted that stopwords have extremely context-specific representations (Ethayarajh, 2019).
However, high polysemy and highly variable context do not necessarily induce more semantic change (Mar-
tinc et al., 2020a). We check the difference of average semantic change between a set of stopwords and
the list of target words for all languages.

First, to compute semantic change scores for a list of stopwords, we use the same procedure that was
used for the target words. For all languages except Latin, we create a list of stopwords by taking the
words at the intersection of the nltk and Spacy stopword lists. For Latin, we use an external resource4.
We keep only stopwords with more than 30 occurrences in each period; the number of stopwords per
language is shown in Table 1. When the number of occurrences of a word is too high, we sample 5000
sentences per period for this word. As can be seen in Table 1, the mean JSD for stopwords is sensibly
lower than the one for target words.

Then, we compare stopword and target word score distributions in order to define a threshold below
which a target word should be classified as unchanged.

We first divide the stopwords’ semantic change score distribution into 10 bins to derive a frequency
distribution in a shape of a histogram with 10 columns, as exemplified for English in Figure 1. We take
the threshold as the local maximum score of the bin in the histogram containing a number of words lower
than an epsilon ε. We exclude the first bin, which is composed of very stable words and can sometimes
have a size smaller than ε. The frequency limit ε used to select the threshold depends on the number of
stopwords for each language: ε = 1/10 ∗ number-of-stopwords. We compute two sets of thresholds: the
leftmost and the rightmost points of the border bin, as shown in the Figure 1. The higher threshold is more
conservative, meaning that fewer words are classified as changed.

2.3.2 Identification of Period-Specific Clusters
The second method looks for concrete indications of semantic change, such as the appearance or disap-
pearance of a specific word sense. Target word clusters should to some extent resemble different word
senses, allowing identification of target words that obtained or lost a meaning. If one of the clusters for a
target word contains word occurrences from one time period and contains less or equal than k (where
k=2) word occurrences from another time period, we assume that this word has lost or gained a specific
meaning.

Since clustering methods sometimes produce small-sized clusters, we consider only the clusters bigger
than a threshold, in order to focus on the “main” usages of a word. Thus, for k-means we enforce a
constraint that a cluster should contain at least 10 word occurrences to be considered in the analysis. For
affinity propagation, we implement a dynamic threshold strategy: the threshold beyond which we consider

4List of Latin stopwords: https://github.com/aurelberra/stopwords
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Figure 1: Distribution of semantic change scores
in the English corpus: target words VS stopwords

aff-prop avg kmeans 5 W2V GS

aff-prop 1
averaging 0.789 1
kmeans 5 0.815 0.811 1
word2vec 0.501 0.558 0.481 1

Gold Standard 0.298 0.397 0.305 0.394 1

Table 2: Spearman correlation between the se-
mantic change scores of various methods and
the gold standard, averaged for all languages.

a cluster is computed for each target word as twice its average cluster size.

2.4 Subtask 2: Ranking
For Subtask2, target words were ranked according to the semantic change scores described in Section
2.2, namely divergence between cluster distributions (JSD) or cosine distance. Additional steps were
performed in some of our submissions to improve this basic approach: cluster filtering and ensembling.

2.4.1 Cluster Filtering
Affinity propagation tends to produce a large number of clusters, and cluster size distribution is highly
skewed. We try several heuristics to filter out the clusters that potentially contain noise and can distort the
comparison between time periods. The first idea is to remove the smallest clusters (containing only one or
two instances), whose appearance in a given time period is not significant. The second idea is to filter out
sentences in which a target word is used as a proper noun, as in the following example: her daddy warn
everyone that rose lane nn be bring home a musician with long hair.

Finally, we noticed that some clusters contain sentences that refer to specific events. For example, one
of the clusters for attack contains sentences about terrorist attack in Israel and consists only of sentences
from the latter time period, for the obvious reasons. The sentences in this cluster contain many named
entities (NEs), e.g.: hezbollah leader hassan fadlallah defend attack nn on israeli civilian target civilian
be a war crime. We filter out clusters that contain too many NEs in some of our submissions, though this
“radical” NE filtering may have drawbacks: one may argue that a “terrorist attack” is a new meaning of a
word attack that was correctly distinguished by the clustering algorithm but then discarded by filtering.

In a real-world application, NE recognition should be done on documents with preserved capitalization,
preferably using a model trained specifically on historical documents. For the shared task we rely on
out-of-the-box NLP pipelines.5 Most of the tools are unable to recognize names in lowercased lemmatized
text but POS-taggers are more reliable: e.g., the SpaCy NE recognition model was unable to recognize
lower-cased names even if the SpaCy POS-tagger labeled the corresponding tokens as proper nouns.

We performed the NE filtering as a post-processing step, to compensate for errors in the NE recognition:
we filter out a cluster if at least 80% of the target word mentions are NE. For the radical filtering, a cluster
is filtered out if the number of proper nouns is 5 times larger than the number of sentences.

2.4.2 Ensembling
We ensemble different approaches for semantic change detection by multiplying the semantic change
scores produced by different methods for each target word. We choose multiplication rather than the
arithmetic average since the underlying distributions of the semantic shift measures are unknown, even
though they produce numbers within the same range. If, for example, the numerical values of a particular
measure are generally larger than values of another measure, the former measure would contribute more
to the average and thus dominate the ensemble. Multiplication does not have this side effect.

We experiment with different combinations of averaging, clustering and Word2Vec based methods in
order to test the hypothesis that the synergy between contextualised and static embeddings improves the

5We used SpaCy for English and German (https://spacy.io/), Polyglot for Swedish (https://pypi.org/
project/polyglot/) and CLTK for Latin (http://cltk.org/).
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Model Binary method AVG English German Latin Swedish
k-means 5 time-period specific clusters 0.600 0.649 0.542 0.500 0.710
aff-prop time-period specific clusters, dynamic threshold 0.496 0.568 0.458 0.700 0.258
aff-prop, merging cluster time-period specific clusters, dynamic threshold 0.545 0.514 0.542 0.575 0.548
aff-prop stopwords, high threshold 0.573 0.622 0.604 0.550 0.516
aff-prop stopwords, low threshold 0.552 0.703 0.667 0.450 0.387
ensemble: averaging + aff-prop stopwords, low threshold 0.621 0.568 0.688 0.550 0.677

Table 3: SubTask 1 results: accuracy.

overall performance. Combinations of models that are too strongly correlated (above 0.8) are discarded.
Some correlations averaged for all languages can be found in Table 2, though these values hide important
disparities among languages.

3 Results

3.1 Subtask1
The results for the binary classification are shown in Table 3. We use BERT fine-tuned on the Semeval
corpora for all submissions. The best official result was achieved by applying the stopword thresholding
method to rankings obtained by measuring the JSD between affinity propagation cluster distributions. The
stopwords thresholding method seems to work best with higher thresholds, which classify fewer words as
changed.

The method of identifying period-specific clusters worked competitively when conducted on k-means
clusters but performed worse with affinity propagation, since the latter method usually produces a large
number of clusters. Reducing the number of clusters by merging the closest clusters together increased
the performance of the method.

Looking at the average accuracy, the stopwords method seems to work better than the period-specific
clusters method. However, we face high discrepancies between languages. Comparing the results for the
same model, i.e. BERT with affinity propagation clustering, the latter method worked best for Latin and
worse than the stopwords method for all the other languages.

3.2 Subtask2
Results for SubTask 2 are presented in Table 4. The best official result was obtained by an ensemble
of Word2Vec static embeddings and fine-tuned BERT contextual embeddings, further improved with
radical NE filtering as a postprocessing step—see row #11 in the table. The good performance of the
method can be explained by the fact that the semantic change scores outputted using static embeddings
and contextualised embeddings are not highly correlated, as shown in Table 2 and we speculate that these
two types of embedding capture different aspects of the semantic change.

Ensembling of four different methods—affinity propagation, K-means (k=5), averaging and Word2Vec
with OP alignment—allows the merging of all the information that they gather (#12). However, it still
does not out-perform the ensemble of only affinity propagation and Word2Vec (#10).

The cosine distance between averaged contextual embeddings performs much better than between
Word2Vec representations for Latin but worse for other languages (rows #8 and #9). The affinity
propagation clustering, which was the best in our previous study (Martinc et al., 2020a), did not perform
well (rows #1 to #6), especially for Swedish, where it performed close to random. One explanation for
this discrepancy could be the shuffling of sentences in the shared task corpora. BERT models cannot
leverage the usual sequence of 512 tokens as a context in this setting but are limited to the number of tokens
in the sentence. The correlation between larger context and better performance of the transformer-based
models has been shown on some NLP tasks before (Dai et al., 2019). Therefore, the lack of context could
have a detrimental effect on the quality of BERT contextual embeddings. The results however do suggest
that by averaging these embeddings, a static embedding of good quality for each target token can be
obtained.

The radical NE filtering has a significant impact on English and German results (compare rows #2 to
#5), though in the opposite directions: it improves the performance on the English corpus from 0.313
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Input Method Post-Processing AVG English German Latin Swedish
Clustering
1 pretrained BERT aff-prop, JSD - 0.278 0.216 0.488 0.481 -0.072
2 fine-tuned BERT aff-prop, JSD - 0.298 0.313 0.436 0.467 -0.026
3 fine-tuned BERT aff-prop, JSD small clusters 0.302 0.327 0.440 0.472 -0.030
4 fine-tuned BERT aff-prop, JSD target NE 0.300 0.328 0.426 0.467 -0.023
5 fine-tuned BERT aff-prop, JSD NE 0.295 0.436 0.302 0.467 -0.025
6 fine-tuned BERT aff-prop, JSD NE, small clusters 0.291 0.413 0.310 0.472 -0.029
7 fine-tune BERT kmeans k=5, JSD - 0.320 0.189 0.528 0.324 0.238

Methods not using clustering
8 fine-tune BERT averaging, cosine dist - 0.397 0.315 0.565 0.496 0.212
9 word2vec OP cosine dist (Schlechtweg et al., 2019) 0.394 0.341 0.691 0.131 0.413

Ensembling
10 aff-prop (#2) + w2v (#9) distance multiplication - 0.417 0.357 0.642 0.366 0.303
11 aff-prop (#2) + w2v (#9) distance multiplication NE, small clusters 0.442 0.361 0.603 0.460 0.343
12 aff-prop(#2), k-means (#7), averaging (#8), w2v (#9) multiplication, equal weights - 0.403 0.279 0.607 0.451 0.276

Table 4: SubTask 2 results: Spearman correlation with the ground truth. Submissions made during the
official evaluation phase are marked with yellow. Numbers preceded with # refer to the rows in this table,
i.e. models used for the ensembling.

to 0.436 but reduces it on the German corpus from 0.436 to 0.302. Filtering as such slightly reduces
the average performance (compare #2 to #6), but by removing small clusters (row #3) we gain slight
improvements for all four corpora. The best performing method also uses filtering, which improves the
ensemble performance for all corpora except for German (compare rows #10 and #11).

Many of the techniques that we try improved the overall method performance only for English: BERT
fine-tuning, affinity propagation clustering, NE filtering. This might be related to the fact that the corpora
are lemmatized, and lemmatization has a smaller effect on English, with its reduced morphology. The
poor results on the Swedish corpus might be related to OCR-errors, leading to a large number of out-
of-vocabulary tokens. BERT models deal with the out-of-vocabulary words by using a vocabulary of
sub-word units (Kudo and Richardson, 2018). However, the vocabulary size is fixed and consists of 30,522
sub-word units, which might not be enough for a noisy corpus. This is supported by the findings of the
another participant of the SemEval-2020 Task 1, which showed that character-based embeddings (ELMo)
yield a significant improvement over BERT on the Swedish corpus (Kutuzov and Giulianelli, 2020).

4 Conclusion

We present the approaches employed by the Discovery team to tackle SemEval-2020 Task 1: Unsupervised
Lexical Semantic Change Detection (Schlechtweg et al., 2020). While our main method was based on
clustering BERT contextualised embeddings, the best official result was obtained by combining this
technique with a method for semantic change detection based on static Word2Vec embeddings.

The methods based on contextualised embeddings with clustering are outperformed by averaging of
contextualised embeddings and static embeddings methods. Other task participants, in particular the
winning team of Subtask 2, used similar static and contextual methods and reached the same conclusion
on the adequacy of static embeddings for these specific tasks and corpora (Pömsl and Lyapin, 2020).
However, the discrepancy among languages is significant and the results averaged on all four corpora
can be misleading. A more thorough analysis on how different embeddings perform in different settings
(short or long term semantic change, type of corpus preprocessing, etc...) and different languages will be
performed in the future work.
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