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Abstract

We describe our contribution to two of the subtasks of SemEval 2020 Task 6, DeftEval: Extracting
term-definition pairs in free text. The system for Subtask 1: Sentence Classification is based
on a transformer architecture where we use transfer learning to fine-tune a pretrained model on
the downstream task, and the one for Subtask 3: Relation Classification uses a Random Forest
classifier with handcrafted dedicated features. Our systems respectively achieve 0.830 and 0.994
F1-scores on the official test set, and we believe that the insights derived from our study are
potentially relevant to help advance the research on definition extraction.

1 Introduction

SemEval 2020 Task 6 (Spala et al., 2020) is a definition extraction problem divided into three different
subtasks, in which the objective is to find the term-definition pairs in free text, possibly spanning across
sentences boundaries. In Subtask 1 the system classifies a sentence as containing a definition or not.
Subtask 2 consists of labeling each token with their corresponding BIO tags. Finally, in Subtask 3 the
system pairs tagged entities, and labels the relation existing between them. The Definition Extraction from
Texts (DEFT) corpus (Spala et al., 2019) is the dataset used for this task, and consists of human-annotated
data from textbooks on a variety of subjects.

Definition extraction methods in the research literature fall into one of the following categories. The
earlier research on the subject applies rules-based approaches, such as Klavans and Muresan (2001) whose
system extracts definitions from medical publications. Similar approaches can also be found in Cui et
al. (2004; 2005) as well as in Westerhout and Monachesi (2007). These methods find definitions by
locating words such as is called, means or is, and using grammatical rules on top of that. They generally
suffer from low recall, but this issue has been addressed by features-based methods. Fahmi and Bouma
(2006) have trained a sentence classifier with features based on bag-of-words and n-grams, position of
the sentences in the text and syntactic information. Westerhout (2009) expands the set of features with
additional linguistic and structural information, and uses a hybrid approach between a rules-based system
and a machine learning classifier.

The above approaches do not generalize well to new domains, as rules and handcrafted features are
often relevant to specific tasks and time-consuming to create, hence the development of Machine Learning
and Deep Learning models. Li et al. (2016) use a Long Short-Term Memory neural (LSTM) network
classifier, where features are automatically created from raw input sentences and part-of-speech sequences.
Contextual words embeddings depend on the adjacent text, and are pretrained in an unsupervised manner
to automatically learn semantic concepts before being used on different downstream tasks (Akbik et al.,
2018). Lin and Lu (2018) apply transfer learning to their downstream token classification problem, which
consists in fine-tuning the context string embeddings to a particular task without having to learn them
from scratch. Transformer-based architectures have been recently used with transfer learning: Alt et al.
(2019) solve a relation extraction problem with GPT (Radford et al., 2018) embeddings, and Pouran Ben
Veyseh et al. (2019) use BERT (Devlin et al., 2018) embeddings for a definition extraction task.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Systems Description

In this section, we describe the transformers architectures used for Subtask 1, as well as the Random
Forest classifier trained with features based on entities tags and positional information to solve Subtask 3.

2.1 Subtask 1: Sentence Classification
We model this subtask as a binary classification problem, where the system determines whether a sentence
contains or not a definition. We use transformers architecture to solve this problem: BERT, and RoBERTA
for a Robustly Optimized BERT Pretraining Approach (Liu et al., 2019). More particularly, we use the
PyTorch-Transformers implementations of BERT and RoBERTa from Hugging Face (Wolf et al., 2019).

Sentence Classifier We use pretrained RoBERTa word embeddings of the input sentence, as well as fully-
connected and softmax output layers to fine-tune the model on the downstream sentence classification
task. Moreover, similarly to what is done in the original BERT paper (Devlin et al., 2018), we concatenate
the last four hidden layers of the RoBERTa model before going through the fully connected layers. To
better generalize the prediction of our model, we also consider different methods. Stochastic Weight
Averaging that was first introduced in Izmailov et al. (2018), consists in combining weights of the same
network at different stages of training. Similarly to what is done in Zhang et al. (2015), we use data
augmentation by replacing words selected at random in the sentence with one of their possible synonyms.
This list of possible choices for each word, called a Thesaurus, is based on WordNet synonyms. Finally,
label smoothing (Szegedy et al., 2015) changes hard targets to soft ones in order to less penalize incorrect
predictions, and to potentially improve robustness of the model.

Token Classifier We train a token classifier with the labels provided for Subtask 2 in order to complement
the predictions of the sentence classification model. During inference, we say that a sentence contains
a definition if it contains tokens classified as B-Definition or I-Definition. When training the model,
we group sentences into paragraphs and use an architecture similar to the one described for the above
classifier, except that it is fine-tuned on a downstream token classification task.

Models Combination Every sentence has one prediction from the sentence classifier, and another one
from the token classification model. If both models agree that a sentence contains or does not contain a
definition, we keep the prediction as such. Sentences for which the models classifications differ are ranked
in decreasing order of predictions scores, and for each model we classify the top half of the sentences as
having a definition. The intuition behind the addition of a token classifier is that the use of more granular
information during training (label at the token level instead of the sentence level only) may lead to better
predictions for Subtask 1.

2.2 Subtask 3: Relation Classification
We approach this subtask as a multi-label classification problem, where the system determines which
entity B is linked to entity A, and the relation that exists between them. We use a Random Forest classifier
(Breiman, 2001) to solve this problem. We now describe the features used and the post-processing steps.

Features and Labels Each entity (let us call it A) can be linked to another entity (let us call it B) in the
same paragraph. For this pair of entities, either they are linked and the target label in the classification
problem corresponds to the relation between them, or they are not linked and we create a dummy target
label corresponding to the fact that there is no relation between them. We have the following features for
this pair:

• Labels from Subtask 2: Encodes the tags of entities A and B, as well as the tags of other entities in
the same paragraph.

• Relative positions: Specifies whether entity A precedes B with or without other entities between
them, and conversely.

• Sentence related features: Specifies whether entities A and B are in the same sentence or not, in
addition to the number of words and entities in their respective sentences.
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• Paragraph related features: Counts the number of words, sentences and entities in the paragraph.

• Subject related feature: Encodes the subject of the textbook the paragraph is extracted from.

Post-Processing Steps Once our classifier gives its predictions, we make sure that a Definition is at most
linked to one Term in a paragraph. If it is not the case, we apply a rule specifying that a Definition is
linked to the closest Term in the paragraph. Also, because our model only allows entity A to be linked to
at most one entity B, we add rules to deal with duplicate sentences in the same paragraph. For instance,
the same Referential-Definition can be linked to the previous Definition as well as the Term in the same
sentence.

3 Experimental Setup

3.1 Subtask 1: Sentence Classification
Data We use the training, development and test datasets provided for SemEval 2020 Task 6, that consist of
annotated text from textbooks on 7 different subjects. Each text data file is divided into several paragraphs,
that are further divided into sentences. In total, there are 17,819 sentences (5,782 of them containing a
definition) in the train dataset, and 872 sentences (284 of them containing a definition) in the development
dataset. In the test dataset on which are evaluated our submissions, there is a total of 859 sentences (279
of them having a definition). We use the BIO (standing for Begin, Interior and Out) tags provided to train
our token classification model. The publicly available BERT-large-cased and RoBERTa-large model have
been pretrained on some of the following datasets: BookCorpus, CC-NEWS, OpenWebText and Stories.

Parameter Settings Using 5-fold cross-validation on the train dataset, we try different combinations of
hyperparameters to find the ones giving the best mean F1 score across the folds. For each iteration, we
use 95% of the train dataset as our train data, and the remaining 5% for validation. Cross-validations are
not performed across the 20 possible folds because fine-tuning the models on our downstream tasks is
very time-consuming, and folds are created by sampling (without replacement) paragraphs from the train
dataset.

The BERT and RoBERTa models fine-tuned on the downstream sentence classification task have the
following configuration. It is trained over 6 epochs and we use the Adam optimizer (Kingma and Ba,
2014) with learning rate of 1e−5. The maximum length of a sequence after tokenization is 128 and the
batch size is 48. Two fully-connected layers with a dropout rate of 0.1 are used to output the predictions.
When data augmentation (DA) is used, the size of the training data is doubled. During this process, a
sentence is sampled (with replacement) from the dataset, and at least 8 of its words picked at random are
replaced with synonyms. When Stochastic Weight Averaging (SWA) is used, the weights of the models
saved during the last 2 epochs of training are averaged.

The BERT and RoBERTa models fine-tuned on the downstream token classification task have the same
configuration as the models described above, except from the following: the learning rate is 3e−5, the
model is trained over 5 epochs, data augmentation is not used and the weights of the models saved during
every epoch of training are averaged. Also, the maximum length of a sequence after tokenization is 256
(paragraphs inputs contain more words than sentences) and the batch size is 32.

Experiments for the token classifier We are interested in a model that correctly classifies definitions
related tokens to improve the predictions of the sentence classifier. In table 1 we present the results of
our experiments on the development dataset: the RoBERTa model with Stochastic Weight Averaging
performs the best for the B-Definition and I-Definition classes, and this is the one being selected.

Experiments for the sentence classifier Table 2 shows the results of different architectures on the
development dataset. They are compared against a baseline model consisting of a Linear SVC model
trained on data pre-processed with a count vectorizer, and we see that it is largely outperformed by
transformers architectures.

In the experiments with the sentence classifier only, the RoBERTa model with Stochastic Weight
Averaging outperforms the others on the development dataset, followed by the RoBERTa model with
label smoothing (LS). To combine the predictions of the sentence and token classifiers, we follow the
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Model Additions
B-Def

Precision
B-Def
Recall

B-Def
F1

I-Def
Precision

I-Def
Recall

I-Def
F1

BERT - 0.617 0.688 0.651 0.772 0.782 0.777

RoBERTa
- 0.685 0.664 0.674 0.804 0.772 0.788

SWA 0.669 0.685 0.677 0.800 0.778 0.789

Table 1: Results of experiments on the development dataset for the token classifier

procedure detailed in section 2.1, but we see that it does not necessarily lead to better predictions. Again,
the RoBERTa model with Stochastic Weight Averaging gives the best results, followed closely by the
RoBERTa model without additional methods. However, the results of our cross-validations on the training
dataset indicate that the RoBERTa model with data augmentation, label smoothing and Stochastic Weight
Averaging performs better than the results shown on the development dataset only. Given the limited
number of submissions allowed, we decide to use the latter model during the competition.

Experiment Model Additions Precision Recall F1

Sentence classifier
only

Baseline - 0.722 0.571 0.638
BERT - 0.802 0.817 0.809

RoBERTa

- 0.822 0.813 0.817
DA 0.799 0.813 0.806
LS 0.799 0.845 0.822
SWA 0.829 0.835 0.832
DA + LS 0.825 0.813 0.819
DA + SWA 0.808 0.817 0.812
LS + SWA 0.805 0.817 0.811
DA + LS + SWA 0.796 0.827 0.811

Sentence classifier
with token classifier

BERT - 0.803 0.849 0.825

RoBERTa

- 0.801 0.853 0.826
DA 0.799 0.845 0.822
LS 0.789 0.849 0.818
SWA 0.812 0.853 0.832
DA + LS 0.799 0.831 0.815
DA + SWA 0.802 0.845 0.823
LS + SWA 0.795 0.838 0.816
DA + LS + SWA 0.785 0.838 0.810

Table 2: Results of experiments on the development dataset for Subtask 1

3.2 Subtask 3: Relation Classification
Data We use the training, development and test datasets provided for SemEval 2020 Task 6. There is a
total of 7,110 entities in the training dataset, 335 entities in the development dataset, and 358 entities in
the test dataset. To train our classifier we use labels from Subtask 2 (BIO tags), in addition to the IDs of
paired entities and the relation label. For illustration, in the sentence “Straightening a limb after flexion is
an example of extension.”, entity T90 corresponds to “Straightening a limb after flexion” whose tokens are
tagged as Definitions, entity T89 to the Term “extension”, and their relation is labeled as Direct-Defines.

Parameter Settings Using 20-fold cross-validation on the train dataset, we perform hyperparameter
search with Optuna (Akiba et al., 2019) to find the values giving the best mean macro-F1 score across
the folds. For each iteration, we use 95% of the train dataset as our train data, and the remaining 5% for
validation.

We use the Scikit-learn (Pedregosa et al., 2011) implementation of Random Forest with the following
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parameter values: 546 trees, the maximum depth of trees is 59, the minimum number of samples required
to be at a leaf node is 3 and the minimum number of samples required to split an internal node is 26.
We assign weights to the different classes in the loss function so that their contribution is inversely
proportional to class frequencies.

Experiments Table 3 shows the results of experiments for Subtask 3 on the development dataset. We see
that the use of the post-processing steps described in section 2.2 greatly improves the predictions of the
Random Forest classifier alone.

Model Post-Processing Precision Recall F1

Random Forest
- 0.913 0.834 0.856

Yes 0.946 0.936 0.941

Table 3: Results of experiments on the development dataset for Subtask 3

4 Results & Discussion

Subtask 1 is evaluated with the F1-score on the positive class. Table 4 summarizes our results on the test
dataset with three different approaches. In a first approach, we train the model described in section 2.1 on
the training plus development datasets for the downstream sentence classification task. The F1-score of
0.783 on the positive class is less than the score of 0.811 obtained during the experiments with these model
parameters. To improve this result, we use a 5-fold cross-validation on the training plus development
datasets, and create an ensemble model by averaging the predictions of the models trained on the different
folds. This second approach results in an improved F1-score of 0.809. In a third approach, we adopt the
same strategy to train an ensemble model on the downstream token classification task, and combine its
predictions with the ones of the above classifier to substantially increase the F1-score to 0.830. Our best
submission helps us achieve 6th place in this subtask of the SemEval competition.

Submission Model Additions Precision Recall F1

Sentence classifier
only

RoBERTa DA + LS + SWA 0.809 0.760 0.783
RoBERTa
with ensembling

DA + LS + SWA 0.798 0.821 0.809

Sentence classifier
with token classifier

RoBERTa
with ensembling

DA + LS + SWA 0.819 0.842 0.830

Table 4: Subtask 1 results on the SemEval test dataset

After analysis of the results on the development dataset, we see that our model performs differently
across subjects: Sociology has the best F1-score of 0.921 and Physics the worst score of 0.667. One of
the reasons that might explain the poor performance of our model on the Physics related data is that
definitions are often used to describe figures (i.e. “The slender arrow represents a ray of unpolarized
light.”), which may not be the case in other subjects. We also see that our model struggles when the term
and definition are not in the same sentence: the sentence “These rules are special cases of the laws of
conservation of charge and conservation of energy.” is labeled has containing a definition and its related
term “Kirchhoff’s rules” is in the next sentence, but our model does not classify it as having a definition.
However, it classifies the very similar sentence “Kirchhoff’s rules, special applications of the laws of
conservation of charge and energy, can be used to analyze it.” has containing a definition, even though it
is not labeled as having one. “Comte named the scientific study of social patterns positivism.” is another
example of sentence not labeled has having a definition, but that the model classifies as having one. These
last two examples show that the annotation process may be inconsistent, making it difficult for our model
to generalize well.

The evaluation metrics chosen by the organizers for Subtask 3 is the macro-average F1-score for the five
following relations: AKA, Direct-Defines, Indirect-Defines, Refers-To and Supplements. The classes in the
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data are very imbalanced, and the distribution of examples between them in the test set is the following:
37 AKA, 294 Direct-Defines, 13 Indirect-Defines, 1 Supplements and 13 Refers-To relations. Table 5
summarizes our results on the test dataset with the Random Forest classifier only, and with the addition
of the post-processing steps. The classifier achieves a macro-average F1-score of 0.902, increased to
0.994 with the post-processing steps, a substantial improvement explained in parts by the large impact the
F1-score of the Refers-To class has on the overall score. Our last submission helps us achieve the 2nd best
score (tied) on the leaderboard of this subtask.

Model Post-Processing Precision Recall F1

Random Forest
- 0.983 0.869 0.902

Yes 0.993 0.996 0.994

Table 5: Subtask 3 results on the SemEval test dataset

The difference in scores between our results on the development and test datasets can be mainly
explained by two reasons. First, Qualifies relations are easier to classify in the test set because they
only involve Terms directly surrounding Qualifiers, and not Definitions that may be further apart. Then,
Refers-To relations involved in duplicate sentences of a paragraph are more straightforward to handle with
rules than other classes such as AKA present in the development dataset.

5 Conclusion

Our system used for Subtask 1 is the combination of a sentence and a token classifier, both based on
a transformer architecture. In Subtask 3 we use a simple Random Forest model built with categorical
features carrying the information of the paired entities, supplemented with post-processing rules. Both
approaches are supervised and perform relatively well for the subtasks at hands.

Including the knowledge about individual BIO tags may substantially improve the performance of the
model for Subtask 1, showing that a good token classifier is key to solve a definition extraction problem.
With the DEFT corpus, it is sometimes difficult to make good predictions for rare classes, especially when
building a token classifier. An idea to improve the models could be to use a data augmentation approach
similar to the one used in Subtask 1 on the examples with elements from the rare classes. One could build
models specific to the different rare classes instead of one unique token classifier, or include additional
information such as Part-of-Speech tags. Also, pretraining our transformers models on domain-specific
text corpus crawled from textbooks is an idea that has been considered but not implemented due to time
constraints.

Ideally, in a definition extraction task the sequence labeling and relation extraction steps should be
handled by a single model. Our results on the separate subtasks suggest that improvements can be made in
this direction, as classification errors of the token classifier has an impact on the relation extraction. Also,
the performance of our supervised models heavily relies on the important investments made to tag the
entities and relations in the text corpus. Research towards semi-supervised or unsupervised approaches
could be fruitful as they do not depend as much on data labeling.
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