
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 458–467
Barcelona, Spain (Online), December 12, 2020.

458

IITK-RSA at SemEval-2020 Task 5: Detecting Counterfactuals

Anirudh Anil Ojha∗ Rohin Garg∗ Shashank Gupta∗ Ashutosh Modi
Indian Institute of Technology Kanpur (IITK)

{aaojha, sronin, gshasha}@iitk.ac.in
ashutoshm@cse.iitk.ac.in

Abstract

This paper describes our efforts in tackling Task 5 (Yang et al., 2020) of SemEval-2020. The task
involved detecting a class of textual expressions known as counterfactuals and separating them
into their constituent elements. Counterfactual statements describe events that have not or could
not have occurred and the possible implications of such events. While counterfactual reasoning
is natural for humans, understanding these expressions is difficult for artificial agents due to
a variety of linguistic subtleties. Our final submitted approaches were an ensemble of various
fine-tuned transformer-based and CNN-based models for the first subtask and a transformer model
with dependency tree information for the second subtask. We ranked 4th and 9th in the overall
leaderboard. We also explored various other approaches that involved the use of classical methods,
other neural architectures and the incorporation of different linguistic features.

1 Introduction

Counterfactuals (Starr, 2019) are statements that describe events that did not (or cannot) happen, which
implies that their truth cannot be empirically verified. They may be divided into two major categories
(Iatridou, 2000). In the first category, the statement discusses possible outcomes had the event in question
actually happened, and thus is called a counterfactual conditional. Specifically, it contains a logical
segment equivalent to “if A, then B” where A did not occur. The “if A” part is called the antecedent and
the “then B” is called the consequent. An example of this is “If we had changed the battery on time, the
car wouldn’t have broken down.” A statement of the second type is called a counterfactual wish. They
also describe alternate realities, but do not talk about outcomes and do not display a conditional structure.
They are called so because they often display ‘wish’ vocabulary e.g. “I wish there was an easy way to
categorise counterfactuals!” Here, the segment referring to the fictional event is called the antecedent, and
there is no consequent. While there are other ways to categorise these logical forms, we believe that this
system covers most of the examples seen in the dataset and provides clear intuition about their general
structure. Readers interested in a more rigorous treatment may refer to (Lewis, 2013).

The ability to reason via counterfactuals is considered a higher form of intellect, as one must extrapolate
the truth using causal relationships, a commonsense understanding of the world and other related events.
Hence, for artificially intelligent systems, counterfactual reasoning is critical for generalisation and
explainability. In terms of more concrete applications, it has been hypothesised to be important for natural
language understanding, goal determination (a major challenge in modern reinforcement learning) and
error analysis (Ginsberg, 1986). Recently, Mothilal et al. (2020) have worked on systems that generate
counterfactual explanations for why classifiers behave the way they do on given examples.

We tried a variety of approaches on this task, including classical machine learning, CNN-based models,
BiLSTM-based models and transformer-based models. We found that the transformer-based neural models
(introduced by Vaswani et al. (2017)) consistently outperformed their competitors. We obtained an F1

∗ Authors equally contributed to this work.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

459

Sentence Gold Label
I wish it had more. True
Even if the next government awards the NHS an annual funding increase of 1.5 per
cent over inflation, which is no simpler than giving everyone good enough medical
care whenever they need it, the service would have still had to make annual efficiency
savings of 2-3 per cent a year.

True

If Mr McCain is in charge, his record of bipartisan outreach will stand him in good
stead; Mr Obama will be able to rely on solid majorities in Congress.

False

If your device is locked and no one can discern the security code, you may not need a
patent on it.

False

Table 1: Samples from the training set of the first subtask. Gold Label True means statement is a
counterfacual.

Sentence Antecedent Consequent
The GOP’s malignant amnesia re-
garding the economy would be hi-
larious were it not for the wreckage
they caused.

were it not for the wreckage
they caused

The GOP’s malignant amne-
sia regarding the economy
would be hilarious

”I wish there was no limit on the
number of groups you could join be-
cause there are so many good ones,”
Larsen said.

I wish there was no limit on
the number of groups you
could join

Duda said that if Netanyahu had said
what was originally reported, ”Israel
would not be a good place to meet in
spite of the previous arrangements”.

Duda said that if Netanyahu
had said what was originally
reported

Israel would not be a good
place to meet in spite of the
previous arrangements

Table 2: Samples from the training set of the second subtask. The objective is to mark the characters in
the antecedent and the consequent as separate labels.

score of 89.3% on the test data of the first subtask and 48.3% on the second subtask, ranking our system
4th and 9th respectively. Our implementation is available via Github.1

2 Brief Task and Dataset Description

The overall task consists of two subtasks:

• Detecting counterfactual statements
• Parsing such statements into antecedent and consequent (if present)

The first may be modelled as a binary classification problem and the second as a sequence-to-sequence
labelling problem. The training set was provided by the task organisers. The examples were segments
from news articles in English and were quite varied in length, from around 5 words to around 400 words.
There were 13000 examples for the first subtask, with an ∼88:12 negative-positive split, and 3500 for the
second subtask. As the datasets were imbalanced, our evaluation metrics were precision, recall, F1-score
and exact match (exclusively for the second subtask). The test set had 7000 sentences for the first subtask
and 1950 for the second. Some samples from the training set are given in Tables 1 and 2. For more details,
please refer to Yang et al. (2020).

1https://github.com/gargrohin/counterfactuals-nlp

https://github.com/gargrohin/counterfactuals-nlp

460

3 Previous and Related Work

Research on counterfactuals is a relatively new area in the NLP community, and consequently, limited
research literature exists. The closest work is by Son et al. (2017) which aimed to detect counterfactual
elements in tweets. They identify a set of rules to filter such examples based on grammatical form
(sentences containing “wish”, “should have”, etc.) and train an SVM to classify filtered sentences on the
basis of POS tags and n-gram features. While their method works well on tweets, we found that these
rules had limited coverage and were not effective in filtering long sentences like those in our dataset. The
filtering also removes several examples, which makes it harder to train further classifiers in an already
data-constrained setting.

Iatridou (2000) provides a thorough treatment of counterfactuals in terms of grammar. However, the
features and verb forms they identify and use are quite complex, like fake tenses. Such morphology is
currently undetectable by even state-of-the-art libraries like spaCy2, which makes this system hard to
implement with computational models without appropriate data. Nevertheless, the paper does allow one
to construct certain useful grammatical rules for inference.

Counterfactual implication and causality are closely linked (Morgan and Winship, 2015). Counterfactual
conditionals often talk about direct results of the presence (or absence) of a particular factor e.g. “If the
gas hadn’t run out, we would have been able to cook dinner.” Even when they do not directly encode
such relationships - one may consider sentences like “Even if you were the last person on the planet, I
wouldn’t go out with you!” - they often imply the existence of other factors that drive the relationship.
Thus, from a linguistic perspective, the vocabulary and structure seen in causal sentences and that seen in
counterfactual sentences have a high degree of overlap. Hence, we believe systems to detect and parse
causal relationships would perform well on this task as well. With respect to the first subtask, fine-tuning
neural models using information-rich word embeddings seems to form the state-of-the-art (Kyriakakis
et al., 2019) and forms the backbone of our submitted approach as well. The second subtask bears a
resemblance to relation-entity extraction (of which cause-effect may be considered a specific case), which
has also been recently dominated by neural models (Li and Tian, 2020; Soares et al., 2019). We found
span-based (Joshi et al., 2020) and discourse parsing-based (Son et al., 2018) approaches particularly
interesting with regards to our task.

4 Our Approaches

4.1 Subtask 1
4.1.1 Classical machine learning
We tried SVMs and gradient-boosted random forests on linguistic feature-based (POS tags, verb tense
and aspect information, etc.) representations of the samples. The baseline provided by the organisers
was an SVM classifier on TF-IDF features with stop words removed. We felt that this would result in the
removal and down-weighting of terms critical for identifying counterfactuality, like ‘should have’ and
‘would have’. Indeed, we found that performance improved remarkably by discarding TF-IDF features and
allowing stop words. This implies that the way that closed class words are used in a sample is particularly
informative in this task. Even using simple unigram word features provided decent results, which suggests
that there are specific words whose presence in itself is useful for detecting counterfactuality. Thus, we
used these features in our neural model as well (see 4.1.3 c)). Even though the results improved by the
progressive addition of linguistic features, the F1 score eventually stagnated at around 65%.

We then added a regex-based filtering step, where we divided the samples based on certain typical
counterfactual forms (inspired by the work of Iatridou (2000)) and classified them separately. We used
four primary forms - sentences containing an ‘if’ then a modal verb, sentences containing a modal verb
then an ‘if’, sentences containing the word ‘wish’, and the leftovers. In the first two, we wished to
capture verb forms like ‘would have’ and ‘could have’, which we found to have a strong correlation with
counterfactuality. We found the modal-if form the hardest to classify, with an F1 of around 52%. The
most notable improvements were on the ‘wish’ form where the F1 was around 90%, which hints that

2https://spacy.io

https://spacy.io

461

counterfactual wishes are the easiest to identify. Classifiers for the other two categories obtained an F1 of
around 62-65%, similar to what we obtained before filtering.

4.1.2 CNN with GloVE and Word2Vec
Inspired by (Kim, 2014), we replaced the words with pretrained word embeddings and applied a CNN-
based classification head. For each sentence, the words were tokenised and replaced with their embedding.
Thus, a matrix was formed with dimension (embedding length × maximum sentence length). We
experimented with multiple kernel sizes and with static and non-static versions of word-embeddings, as
in the paper. We finally settled on 100 kernels of sizes 3, 4 and 5 each. There was a max-pooling layer
before the fully-connected layer. We abandoned the non-static embeddings layer because training the
embeddings resulted in overfitting. GloVe (Pennington et al., 2014) embeddings performed 3-4% better
F1-wise than Word2Vec (Mikolov et al., 2013) embeddings as seen in Table 3.

4.1.3 Transformer-based models
Introduced by Vaswani et al. (2017), transformer-based models have recently reported state-of-the-art
(SOTA) results on a variety of NLP tasks, and we found the same to be true for our task as well. Since
our dataset was small, we experimented with transfer learning on three state-of-the-art variants - BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019). We tried the following
modifications (exact values reported in Table 3 and 5):

a) Fully-connected head: This involved combining the word-level embeddings generated by the trans-
former into a sentence-level embedding and then applying a fully-connected layer for classification.
We experimented with various ways of producing the sentence embedding, such as taking the mean,
max-pooling (taking the maximum value over each dimension) and selecting particular embeddings.
We found that taking last word embedding (the [CLS] token in BERT and RoBERTa) gave us the best
results. We applied a tanh activation between the sentence embedding and the linear layer. ‘Large’
variants performed around 5% better on F1 than their ‘base’ counterparts. Despite the simplicity of
this approach, it was second only to the ensembles (see section 4.1.5). We also tried to fine-tune
these models on subsets of the data after applying a filtering step as in 4.1.1. However, the F1 score
stagnated around 80%, probably because of insufficient data.

b) CNN head: Instead of obtaining a sentence embedding, we directly applied a CNN head on the
word-embedding matrix from the transformer. This is similar to what we did in the case of vanilla
CNN model (4.1.2), and we decided to apply the same final CNN head that we used in that section.
While this did provide about 3-4% better F1 than the ‘base’ versions with the fully-connected heads,
it was still prone to overfitting and could not outperform the ‘large’ versions.

c) With linguistic features: Following up on our observations in 4.1.1, we appended linguistic features
like word n-grams and POS n-grams to the transformer embeddings before passing it through a fully
connected layer. We experimented with unigrams, bigrams and trigrams of words and POS tags,
and eventually settled on the top 1000 trigram features of each. This addition stabilised training and
improved performance on ‘base’ models by 3-4% F1, but could not outperform our fine-tuned ‘large’
models.

4.1.4 Discourse parsing-based approaches
We took inspiration from Son et al. (2018) and parsed the samples into discourse arguments with PDTB-
style methods. We were motivated by two key observations - there was a high degree of overlap between
relevant discourse arguments and sections encoding counterfactuality (antecedent and consequent), and in
longer examples, only a small part of the sentence was counterfactual. Thus, we hoped that this parsing
could help the system better filter out the antecedent and consequent in longer examples and focus on
understanding their specific structure.

We first used spaCy’s dependency parser on the samples, and then used this information along with the
presence of known discourse connectives like ‘even though’ and ‘because’ to obtain discourse arguments.
After parsing, we tried two architectures. In the first, we obtained word-level GloVe embeddings as in
4.1.2 and applied a hierarchical BiLSTM network. The first BiLSTM network was applied at the word

462

level, over each discourse argument, thus giving us a discourse-level embedding in the form of the final
hidden state. These discourse-level embeddings were taken sequentially and fed into another BiLSTM.
The final hidden state thus generated was fed into a fully-connected layer.

In the second approach, we used a RoBERTa model to obtain the discourse-level embedding, similar to
how we obtained the sentence-level embedding in 4.1.3 a). Each discourse argument was limited to 32
words, with a maximum of 8 discourse arguments. These discourse embeddings were recurrently fed into
a BiLSTM as before. We initialised the discourse-level BiLSTM with the sentence-level embedding of
the samples obtained as in 4.1.3 a). Hence, the hidden state dimension of the BiLSTM was the same as
that of the transformer embedding. While we were able to train this with ‘base’ transformers, the ‘large’
variants took too long.

Despite our intuition, GloVe embeddings and the hierarchical BiLSTM performed slightly worse than
the Glove + CNN model in 4.1.2. In the case of transformer embeddings with a BiLSTM, we did see an
improvement over the results in 4.1.3 a) on ‘base’ transformers, but not more than what we had already
obtained before in 4.1.3 b) and 4.1.3 c), suggesting that this also suffer from overfitting due to a large
number of parameters. The results are recorded in Table 3.

4.1.5 Ensembles
We took ensembles of the different models we had trained so far. This was based on our observation
that different models failed on different examples, and thus a simple voting algorithm would smooth out
inconsistencies. We also observed that RoBERTa models usually had higher recall while XLNet models
had higher precision, and thus could complement each other. We could only experiment with hard voting
ensembles due to a lack of time - it would be interesting to explore how other methods would perform.
This approach yielded the best results overall. We finally submitted two ensembles. The first ensemble
model is a combination of (individually fine-tuned as in 4.1.3 a)) an XLNet large, an XLNet base and a
RoBERTa large. The second ensemble model is a combination of a RoBERTa large, an XLNet large, an
XLNet base, a BERT base with CNN head, a BERT large and a CNN model with GloVe embeddings. The
second model gave the best results on the final test set.

4.2 Subtask 2
4.2.1 Sequence Prediction
We tried two approaches while treating this as a sequence prediction task:

a) Token classification using transformers: Motivated by the performance of transformers in Subtask
1, we experimented with transformer-based models on this subtask as well. We approached the
problem like a sequence prediction task similar to named-entity recognition. We tokenised the string
into words and gave BIO tags to the words in the antecedent and consequent separately for training.
We fine-tuned separate models for detecting antecedent and consequent, as we noticed that the two
sections often overlapped (sometimes completely). As RoBERTa gave us the F1-best performance in
the first subtask, we experimented with BERT and RoBERTa.

b) End to End Sequence Labelling: We also modelled the task as an end-to-end sequence labelling
problem, where each word was be labelled as an antecedent or a consequent. We used the algorithm
described by (Ma and Hovy, 2016) in which word representations and character-level representations
are used as inputs to a bi-directional LSTM model. The two hidden states for each word were
concatenated to form the final output. Finally, a Conditional Random Field (CRF) (Lafferty et al.,
2001) was used for sequence labelling.

4.2.2 Using dependency tree
An exploratory analysis of the dataset showed that around 60% of the sentences in the dataset had the
word ‘if’. Out of these, 90% were in antecedents, thus showing a correlation between the usage of the
word ‘if’ and part of the sentence being an antecedent. Given this observation, we tried to use this marker
to deal with such antecedents separately.

We separated these sentences and analysed the dependency tree using a dependency visualiser to find a
pattern to the antecedents which started with the word ‘if’. In most cases where it was used, the word

463

‘if’ was a subordinating conjunction that depended on a noun/verb from an independent clause in the
dependency tree. The last word of the antecedent in nearly all the cases was the rightmost leaf node of
the sub-tree rooted in that word, i.e. the last word up to which that section of the tree extended. The
antecedents extracted from the dependency tree were closest to ground truth, which is why we used them
in our final model for the relevant sentences.

If I were at DreamWorks Animation
SCONJ PRON AUX ADP PROPN PROPN

nsubj

mark

prep

pobj

compound

Figure 1: Antecedent in a counterfactual statement: Antecedent extends from ‘if’ to the rightmost leaf
node of sub-tree rooted at ‘were’

5 Implementation Details and Results

All the scores reported in the paper are on the validation set created by us by randomly splitting the dataset
in a ratio of 75%-25%. We used the same training and validation sets across models to make sure the
results were comparable. Please note we only report results of the key experiments - more details can be
found at the GitHub repository. The results are reported in Tables 3 and 4.

The highly imbalanced nature of the dataset posed a persistent challenge. We explored four methods to
tackle it - simple oversampling of the minority class, SMOTE (Chawla et al., 2002), undersampling the
majority class, and using a weighted cross-entropy loss. The sampling was done such that the final number
of positive and negative samples in the training set were equal. The weights in the cross-entropy loss were
set to be the inverse of the class proportions i.e. mistakes on the minority class were penalised much more
than those on the majority class. Out of all of these, we found that using the weighted cross-entropy loss
provided the best results. All of the methods reported use this loss to tackle data imbalance.

For classical methods, we used the scikit-learn toolbox3 and spaCy to generate linguistic features. A
linear SVM with the regularisation parameter set as 1.0 yielded the best results. The linear SVM has been
observed to perform the best in sentence classification tasks (Joachims, 1998).

The implementation for the CNN based models in 4.1.2 was kept similar to the original implementation
by (Kim, 2014). The convolutional kernel of sizes {3,4,5} was used with ReLU activation after each
convolution and a max-pool layer after the final convolution. A fully-connected layer with the output
being the number of classes (2 in our case) completed the model. A dropout (Srivastava et al., 2014) layer
was added before the final layer. An AdamW (Loshchilov and Hutter, 2017) optimiser was used with an
initial learning rate of 1× 10−3. As for the transformer models with a CNN head, the word-embedding
matrix simply replaced the GloVe embeddings that were used in a stand-alone CNN model, with the rest
of the model remaining the same.

The transformer-based models described in 4.1.3 were implemented with the help of the Transformers
library in PyTorch by HuggingFace4. We used an AdamW optimiser for all of our models with an initial
learning rate of 1× 10−5 over all the parameters and an epsilon of 1× 10−8. We trained the models for a
total of 20 epochs and saved the model after each epoch if it provided the best F1 score on the validation
set so far. We found that performance peaked around 16 epochs. We decayed the learning rate linearly to
0 over the training period. The choice of these involved quite a bit of fine-tuning as we found that results
were sensitive to these hyper-parameters. The algorithm would not converge outside a specific range, and
even within this range, the F1 could vary by 4-5 points upon small changes.

3https://scikit-learn.org/stable/index.html
4https://github.com/huggingface/transformers

https://scikit-learn.org/stable/index.html
https://github.com/huggingface/transformers

464

Model Precision Recall F1 Model Precision Recall F1
Baseline (given) 73.46 7.86 14.20 SVM+3-gram 64.64 55.89 59.95
SVM+Tf-Idf 77.45 34.49 47.73 Above+POS 73.60 58.37 65.10
CNN (word2vec) 64.41 75.78 69.63 CNN (GloVe) 69.18 75.50 72.20
RoBERTa (large) 88.98 88.98 88.98 XLNet (large) 92.96 83.75 88.12
BERT (large) 89.25 82.40 85.67 BERT (b, CNN) 89.05 85.12 87.04
RoBERTa (l, CNN) 89.82 82.64 86.08 RoBERTa (b, LF) 89.02 85.40 87.20
RoBERTa (l, LF) 86.01 91.46 88.65 SVM on ‘wish’ 96.55 84.84 90.32
DP (Transformer) 90.08 85.12 87.54 DP (Word2Vec) 69.83 71.36 70.59
Vote (first)* 85.96 9

¯
2.83 89.27 Vote (second)* 90.04 93.24 91.18

Table 3: Major results for subtask 1: classification of counterfactual statements. ∗ indicates those
submitted for the competition. All results are on the same train/val/test split.

Model Precision Recall F1 Exact match
RoBERTa (large) 45.80 48.10 44.90 0.0349
RoBERTa + DepParse* 48.30 51.80 47.10 0.0318

Table 4: Major test results for subtask 2: identification of antecedent and consequent. ∗ indicates those
submitted for the competition. All results are on the same train/val/test split.

As we mentioned earlier, the ‘large’ versions of the transformers outperformed their ‘base’ versions
by 1-2% in the case of BERT and 4-5% in the case of the others. As shown, adding the CNN layer did
actually improve performance in the relatively less-pretrained BERT, but slightly worsened performance
on the sophisticated RoBERTa (large). Similarly, our experiments with linguistic features (LF) improved
performance on base-sized transformers, but could not beat the performance of a fine-tuned large RoBERTa.
The results for the discourse parsing-based (DP) method are also shown here - as mentioned earlier, they
perform marginally (0.3%-0.5% F1) better than the models of 4.1.3 b) and c).

For subtask 2, the transformer-based model in 4.2.2 was implemented with the help of the Simple
Transformers library5 in PyTorch. We tried BERT and RoBERTa as the models and used an AdamW
optimiser with an initial learning rate of 4× 10−5 over all the parameters and an epsilon of 1× 10−8, and
were trained for 5 epochs. We used spaCy for generating and visualising the dependency tree in 4.2.2.

6 Qualitative Analysis of Results

Here we present a brief analysis of the classification results for Subtask 1. We try to identify some of the
major reasons why our models perform the way they do, mostly by analysing the training data and the
false predictions made by our best models.

Identifying whether a sentence is a counterfactual or not can be a difficult task even for humans - even
we were often unable to agree upon whether a particular example in the training data was a counterfactual
or not. However, one pattern is quite evident - many counterfactuals are conditionals e.g. of the form
“if... then...”. Hence, the model learns to give a high weight to the embeddings corresponding to these
words. Unfortunately, this means that a sentence having a similar structure is often falsely classified as a
counterfactual. For example, the following statements were falsely classified as counterfactuals:

• ‘Using simple math, you’d think that if you had worked 33 years and chose to work one more year,
then you’d boost your benefits by about 1/33, or 3%.’

• ‘Even if the Prime Minister’s deal had been passed on Tuesday, there is a huge raft of legislation the
Government would still need to pass.’

5https://github.com/ThilinaRajapakse/simpletransformers

https://github.com/ThilinaRajapakse/simpletransformers

465

But the major issue in all the models was a low recall, i.e. a high number of false negatives. A low
recall value was the major reason why we kept the voting threshold low (less than 50%) for a statement to
be classified as a counterfactual in our ensemble models. We believe that this was due to the models not
being able to capture certain types of counterfactuals that do not follow a specific sentence structure. For
example, consider the sentence:

• ‘“Can you imagine if I said the things she said?” Mr. Trump told the crowd.’

This is a counterfactual, but our model was not able to focus on the word imagine that makes it one.
This shows that we either need a lot more data for different types of counterfactuals or a more objective
set of rules that a model can be forced to learn. Sometimes a counterfactual is present as a part of a quote
in a much more complex sentence such as

• ‘“So even if he can spend infinite money, it doesn’t follow that he can use that money to condemn
property,” Somin said, adding that the administration would then be limited to building the predicted
wall on land the federal government already own.’

• ‘It’s become fashionable to tell a disability story in a hopeful arc, where the heroine may have
moments of discouragement or fear, but comes out into full life at the end - into mainstream schools,
love and romance, full participation in the social world, and these stories have become so pervasive
that if they were to spread to aliens they’d find them familiar.’

It is possible that the complexity and length of the sentence and the presence of many clauses that were
clearly not counterfactual overshadowed the one clause that was a counterfactual and brought down the
final score.

For subtask 2, the major challenge was that the antecedent and consequent which contributed to
counterfactuality were often only parts of the longer sentence and hence it was difficult to conclude where
the contributing bits ended. This problem was easier to solve in some cases where there was a pattern to
the sentences as in the case of sentences containing ‘if’. There we saw that the dependency tree could
be relied upon as there was a clear structure to the start of the antecedent, which depended on the main
noun/verb of the clause.

7 Conclusion and Future Work

The identification and the analysis of counterfactual statements are essential for any computational natural
language task, be it knowledge extraction or question answering. We attempt to identify such statements
from a diverse corpus and produce competitive results using several SOTA language models. We modify
some of the models and also use linguistic features to make our models task-specific, and with an ensemble
of these models, we were able to rank 4th on the leaderboard in the first subtask. There is still scope for
further improvements, such as hardcoding more specific rules in the model related to the various kinds of
counterfactuals.

We also attempt to analyse the counterfactual statements by identifying the antecedent and the conse-
quent. We model the problem as a sequence prediction problem and try out multiple transformer-based
models as well as probabilistic ones. We ranked 9th on the leaderboard for this subtask. There are some
other methods that one can experiment with for this task, such as separating the sentence into clauses and
focusing on individual clauses, span-based models, analysing patterns involving other parts-of-speech, and
graph-based networks that can leverage the power of the dependency tree correlation that we identified.
We leave these methods for future work.

References
Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. Smote: synthetic minority

over-sampling technique. Journal of artificial intelligence research, 16:321–357.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

466

Matthew L Ginsberg. 1986. Counterfactuals. Artificial intelligence, 30(1):35–79.

Sabine Iatridou. 2000. The grammatical ingredients of counterfactuality. Linguistic inquiry, 31(2):231–270.

Thorsten Joachims. 1998. Text categorization with support vector machines: Learning with many relevant features.
In European conference on machine learning, pages 137–142. Springer.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the Association for Computational
Linguistics, 8:64–77.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar, October.
Association for Computational Linguistics.

Manolis Kyriakakis, Ion Androutsopoulos, Artur Saudabayev, et al. 2019. Transfer learning for causal sentence
detection. arXiv preprint arXiv:1906.07544.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

David Lewis. 2013. Counterfactuals. John Wiley & Sons.

Cheng Li and Ye Tian. 2020. Downstream model design of pre-trained language model for relation extraction
task.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119.

Stephen L Morgan and Christopher Winship. 2015. Counterfactuals and causal inference. Cambridge University
Press.

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining machine learning classifiers through
diverse counterfactual examples. In ACM Conference on Fairness, Accountability, and Transparency, January.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. arXiv preprint arXiv:1906.03158.

Youngseo Son, Anneke Buffone, Joe Raso, Allegra Larche, Anthony Janocko, Kevin Zembroski, H Andrew
Schwartz, and Lyle Ungar. 2017. Recognizing counterfactual thinking in social media texts. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 654–658.

Youngseo Son, Nipun Bayas, and H. Andrew Schwartz. 2018. Causal explanation analysis on social media.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–
1958.

William Starr. 2019. Counterfactuals. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, fall 2019 edition.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008.

467

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet:
Generalized autoregressive pretraining for language understanding. In Advances in neural information process-
ing systems, pages 5754–5764.

Xiaoyu Yang, Stephen Obadinma, Huasha Zhao, Qiong Zhang, Stan Matwin, and Xiaodan Zhu. 2020. SemEval-
2020 task 5: Counterfactual recognition. In Proceedings of the 14th International Workshop on Semantic
Evaluation (SemEval-2020), Barcelona, Spain.

	Introduction
	Brief Task and Dataset Description
	Previous and Related Work
	Our Approaches
	Subtask 1
	Classical machine learning
	CNN with GloVE and Word2Vec
	Transformer-based models
	Discourse parsing-based approaches
	Ensembles

	Subtask 2
	Sequence Prediction
	Using dependency tree

	Implementation Details and Results
	Qualitative Analysis of Results
	Conclusion and Future Work

