
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 451–457
Barcelona, Spain (Online), December 12, 2020.

451

CNRL at SemEval-2020 Task 5: Modelling Causal Reasoning in Language
with Multi-Head Self-Attention Weights based Counterfactual Detection

Rajaswa Patil1,2 and Veeky Baths1,3

1Cognitive Neuroscience Lab, BITS Goa
2Department of Electrical & Electronics Engineering

3Department of Biological Sciences
BITS Pilani K. K. Birla Goa Campus, India

{f20170334, veeky}@goa.bits-pilani.ac.in

Abstract

In this paper, we describe an approach for modelling causal reasoning in natural language by
detecting counterfactuals in text using multi-head self-attention weights. We use pre-trained
transformer models to extract contextual embeddings and self-attention weights from the text.
We show the use of convolutional layers to extract task-specific features from these self-attention
weights. Further, we describe a fine-tuning approach with a common base model for knowledge
sharing between the two closely related sub-tasks for counterfactual detection. We analyze and
compare the performance of various transformer models in our experiments. Finally, we perform
a qualitative analysis with the multi-head self-attention weights to interpret our models’ dynamics.

1 Introduction

Causal reasoning is a process of detecting cause-effect relationships and is increasingly being used in
artificial intelligence for improving generalization and interpretability. Modelling causal reasoning in
language involves detecting such cause-effect relationships from natural language texts. A cause-effect
relationship can be modelled as: Event A causes Event B. Counterfactuals describe events counter to facts
and hence naturally involve common sense and causal reasoning. A counterfactual can be modelled as a
cause-effect relationship of the form: Event A could have caused Event B (Event A did not occur).

SemEval-2020 Task-5 (Yang et al., 2020) consists of two independent sub-tasks: a binary-classification
task for detecting counterfactual statements and a span-detection task for detecting antecedent (cause) -
consequent (effect) spans of given counterfactual statements (Table 1). In this work, we use multi-head
self-attention weights from pre-trained transformer models (Vaswani et al., 2017) to capture the semantic
interactions between the tokens of given text with respect to causal relations. We use a fine-tuning
approach with a common base model for knowledge sharing between these two closely related sub-tasks.
The code for this work is made publicly available as a GitHub repository.1

2 Background

Early work on causal reasoning and related tasks in natural language was based on various statistical
and linguistic approaches (Asghar, 2016). Recent work for causal reasoning related tasks involves
deep learning based approaches. Causal reasoning can be achieved through extraction of cause-effect
relations with CRF and LSTM based sequence labelling tasks (Dasgupta et al., 2018). Counterfactuals
can contain implicit causal relations (Table 1). Using multi-head self-attention at word level can help
capture such implicit causal relations effectively (Liang et al., 2019). Current benchmarks for modelling
causal reasoning involves question-answering tasks (Gordon et al., 2012). Using pre-trained transformer
models have been effective on such tasks (Sap et al., 2019). Self-attention weights from such transformer
models are usually structured in a 3-dimensional matrix. Using convolutional neural networks with these
self-attention weight matrices can be helpful for extracting semantic features for downstream NLP tasks
(Fang et al., 2019). Similar approaches can be used to extract features for detecting counterfactuals in

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://github.com/rajaswa/counterfactual-detection-semeval-2020
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Counterfactual Statement Antecedent Consequent

”If I had 10 pharmacists who worked
with me, I could reach 100 people

more effectively.”

If I had 10 pharmacists who worked
with me

I could reach 100 people more
effectively

”Thanks for the article on this new
term that fits me so well, wish all your

articles were worthy of praise.”

wish all your articles were worthy of
praise -

Table 1: Example counterfactual statements from the task dataset

natural language texts. Further, the multi-head self-attention attention weights from these models can also
be used in interpretative qualitative analysis (Voita et al., 2019).

3 Methodology

3.1 Base Architecture

We use the knowledge learned during the binary-classification counterfactual detection sub-task for the
antecedent-consequent span-detection sub-task by defining a base architecture, common to both the
sub-tasks (Figure 1). The base architecture is used to extract task-specific features, which are further
passed on to task-specific modules. We first train the base architecture with a binary-classification module
for the first sub-task. Then, we replace the binary-classification module with a regression-module and
fine-tune the already trained base architecture for the more complex second sub-task.

For the base architecture, we use pre-trained transformer models to extract contextual output embeddings
and multi-head self-attention weights from the tokenized input text. The output embeddings are passed
through a pooling layer to get a pooled embedding. The multi-head self-attention weights are structured in
a 3-dimensional matrix with the following dimensions: (number of attention heads, number of tokens in
the text, number of tokens in the text). This matrix is passed through convolutional and linear blocks to get
an attention embedding. The pooled embedding and the attention embedding are concatenated together
to form a combined feature embedding. We apply a layer normalization operation on the combined
feature embedding for better generalization and stability for knowledge sharing across the sub-tasks. The
feature embedding is then passed through a linear block and fed to the task-specific module. A linear
block is composed of a fully connected layer with ReLU activation and dropout regularization, and a
convolutional block is composed of a 2D-convolution layer with batch normalization, ReLU activation
and dropout regularization. Here, we experiment with various pre-trained transformer models which differ
from each other in terms of pre-training approach, architecture and number of parameters: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) (robust pre-training), XLNet (Yang et al., 2019) (autoregressive
model) and DistilBERT (Sanh et al., 2019) (distilled model). Usually, the last layer of any transformer
model gets quickly biased for any individually trained task. Here, we concatenate the output embeddings
and multi-head self-attention weights from the last three layers of the transformer model so that more
generalized features are learned by the common base architecture while training for each of the sub-tasks
separately.

3.2 Task Specific Modules

For the counterfactual detection sub-task, we have binary labels for various statements to be counter-
factuals / non-counterfactuals. We use a linear block with sigmoid activation as a binary-classification
module for this task. For the second sub-task, we have character-level span locations (start-id and end-id)
for the antecedent and consequent spans of the given counterfactual statements. This can be treated as a
regression problem with 4 feature values. We use an another linear block with ReLU activation and 4
output neurons as a regression module for this task. The lengths of various counterfactual statements in the
second sub-task vary considerably across the dataset. This induces a certain variance in the character-level



453

Input	Tokens

Transformer
Model

Concatenation

Task	Specific	Module

Multi-Head
Attention
Weights

Attention	Embedding

Linear	Block	2

Convolutional	Block	1

Convolutional	Block	2

Output	Embeddings

Pooled	Embedding

Mean
Pooling

Linear	Block	1

Combined	Feature	Embedding

Layer	Normalization

Linear	Block	3

Figure 1: Base Architecture

span location features. To handle this variance, we scale each of these 4 span features by the length
of the counterfactual statement. The span features are scaled down by the lengths of their respective
counterfactual statements during training. Consequently, we scale up the predicted span features during
inference to obtain the actual antecedent-consequent span locations. The functioning of the regression
module for antecedent-consequent detection during training and inference is explained in Algorithm 1.

4 Experiments

For all our experiments, we use Binary Cross Entropy loss (for counterfactual detection) and Smooth L1
loss (for antecedent-consequent span regression) with Adam optimizer (with weight decay) to train our
models. We use the PyTorch implementations of the smallest base variants of pre-trained transformer
models by Hugging Face2 (Wolf et al., 2019) in our base architecture. We use a 90-10 data split for
training and development purposes respectively. The data distribution across the splits is shown in
Table 2. We validate our models on F1 score (for counterfactual detection) and Smooth L1 loss (for
antecedent-consequent detection). The evaluation metrics for the counterfactual detection task are the
binary precision, recall and F1 scores. For the antecedent-consequent span detection task, the precision,
recall and F1 score are defined as sequence labelling metrics with respect to the overlap between the
predicted and the ground truth spans3.

2https://huggingface.co/
3https://github.com/arielsho/Task-5_Baseline/blob/master/subtask2_baseline.py
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Algorithm 1 Counterfactual Antecedent-Consequent Detection
1: while Training do
2: for all counterfactual ∈ data do
3: spans⇐ (antecedent start, antecedent end, consequent start, consequent end)
4: spans⇐ spans

length(counterfactual)

5: output⇐ RegressionModule(counterfactual)
6: loss⇐ SmoothL1Loss(output, spans)
7: end for
8: end while
9: while Inference do

10: for all counterfactual ∈ data do
11: output⇐ RegressionModule(counterfactual)
12: spans⇐ output ∗ length(counterfactual)
13: end for
14: end while

Task Training Development Test

Counterfactual Detection 11700 1300 7000
Antecedent-Consequent Detection 3195 356 1950

Table 2: Data distribution across the splits (number of samples)

5 Discussion

For the final submission, we use RoBERTa and BERT as the transformer model in our base architecture
for sub-task 1 and sub-task 2 respectively. On the final task leaderboard, our system ranks 13th (0.845
F1) for the counterfactual detection sub-task and 7th (0.688 F1) for the antecedent-consequent detection
sub-task. Since we treat antecedent-consequent detection as a regression task, we do not monitor the
Exact Match score between the predicted and ground truth spans, which is more significant for token-level
sequence labelling based approaches. We analyse the performance of various transformer models with
hyperparameter tuning post evaluation (Table 3). RoBERTa gives the best results for the counterfactual
detection sub-task. Whereas, BERT gives the best results for the antecedent-consequent detection sub-task.
DistilBERT, a considerably smaller model (65M parameters) shows comparable performance with the rest
of the transformer models (110M+ parameters) for both the sub-tasks.

Transformer Model Sub-Task 1 Sub-Task 2

F1 Recall Precision F1 Recall Precision

BERT 0.824 0.787 0.863 0.688 0.672 0.74

RoBERTa 0.863 0.847 0.879 0.644 0.567 0.822

XLNet 0.823 0.862 0.788 0.634 0.554 0.816

DistilBERT 0.788 0.825 0.754 0.639 0.566 0.812

Table 3: Post evaluation analysis of various transformer models in base architecture

Since BERT performs marginally better than rest of the transformer models for antecedent-consequent
detection sub-task, we consider BERT for the further qualitative analysis. We inspect the multi-head
self-attention weights from the final layer of BERT (Vig, 2019) to interpret the model’s dynamics.
Overall, the model assigns more attention to certain parts of text which are related to the conditional
nature of the counterfactual statements. Moreover, we see that some of the attention-heads learn to assign
more attention to some specific parts of the text. Head1,6 assign maximum attention to punctuation and
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Head2,4,12 focus more on the auxiliary verbs. Head3,11 attend to conjunctions and verbs which act as
causal connectives in the text. Head5 and Head7 attend to entities and numerical values respectively
(if present). This property of linguistically selective-attention of the attention-heads can be observed
in the following examples of antecedent-consequent spans detected by our system (rounded off to
include partially covered words). Where, an underline indicates the detected antecedent and the detected
consequent is made bold.

1. If3,11 only3 Trump had listened to Chris5 Christie5 he wouldn’t2,4,12 be in this mess.

2. If3,11 this were an open seat5, you would2,4,12 have six, eight7, maybe 127 people running.

3. ’I wish2,4,11 I was 407 years old, but I’m not,’ he told12 POLITICO5.

4. I could2,4,11 have been you and you could3,12 have been me.

5. Of course the company wouldn’t2,4,7,12 have3 had to sell such a prized asset if11 it
had other options to raise5 capital.

The superscripts here represent the most attending attention-head(s) for the corresponding word. The
same can be confirmed by a visualization (Figure 2) of the head-wise color coded self-attention weights.
For example 3 and 4, we have no consequent part in the text. Our system detects (0,0) as consequent
span start and end locations for such counterfactual statements, indicating the absence of the consequent.
The conjunctions (but / and) in such counterfactual statements are ignored by the attention-heads. But
the conjunctions (if ) in counterfactual statements with a consequent part (Example 1,2 and 5) are highly
attended by the attention-heads through the tokens from entire sequence. This shows the ability of the
model to differentiate the causal connectives from the non-causal ones in the text. Punctuation play
an important role here as they are usually present near the boundaries of antecedent-consequent spans
(Example 2 and 3). Auxiliary verbs (would, wouldn’t, could, have) are assigned maximum attention
across all the examples as they directly correspond to the conditional nature of counterfactual statements.

1 2 3 4 5

Figure 2: Head-wise self-attention weights visualization for BERT in base architecture
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6 Conclusion

Our proposed approach uses multi-head self-attention weights from transformer models to detect causal
relations for counterfactual detection in text. Through our experiments, we find that RoBERTa overall
shows the best performance for counterfactual detection task and BERT performs the best for the
antecedent-consequent detection task. We show that even smaller transformer models like DistilBERT
perform counterfactual detection tasks effectively. With knowledge sharing between the two sub-tasks, our
system detects antecedent-consequent spans in counterfactual statements with good efficiency by a simple
regression over the spans. This can possibly be further improved by post-inference processing on the
predicted spans or replacing the regression module with a token-level sequence labelling module. Further,
we show that through our approach, the attention-heads attain a property of assigning linguistically
selective-attention with respect to the conditional nature of the counterfactual statements.

Acknowledgements

This work was carried out at the Cognitive Neuroscience Lab at BITS Goa4 through the funding from
DST-CSRI – SR/CSRI/50/2014(G).

References
Nabiha Asghar. 2016. Automatic extraction of causal relations from natural language texts: A comprehensive

survey. CoRR, abs/1605.07895.

Tirthankar Dasgupta, Rupsa Saha, Lipika Dey, and Abir Naskar. 2018. Automatic extraction of causal relations
from text using linguistically informed deep neural networks. In Proceedings of the 19th Annual SIGdial Meet-
ing on Discourse and Dialogue, pages 306–316, Melbourne, Australia, July. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Yong Fang, Jian Gao, Cheng Huang, Hua Peng, and Runpu Wu. 2019. Self multi-head attention-based convolu-
tional neural networks for fake news detection. PLOS ONE, 14(9):1–13, 09.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. 2012. SemEval-2012 task 7: Choice of plausible
alternatives: An evaluation of commonsense causal reasoning. In *SEM 2012: The First Joint Conference on
Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pages
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