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Abstract

We consider detection of the span of antecedents and consequents in argumentative prose a
structural, grammatical task. Our system comprises a set of stacked Bi-LSTMs trained on two
complementary linguistic annotations. We explore the effectiveness of grammatical features
(POS and clause type) through ablation. The reported experiments suggest that a multi-task
learning approach using this external, grammatical knowledge is useful for detecting the extent of
antecedents and consequents and performs nearly as well without the use of word embeddings.

1 Introduction

Conditional statements are of interest to investigations into the semantics of natural language text because
they inform on factivity of statements as well as establish reasoning and argumentation in text. In formal
logic, conditionals obey the principle of explosion (ex falso quod libed), and counterfactuals allow any
conclusion. In language, however, assuming that facts had been different is frequently used to explore,
for instance, causal relations relevant to the ongoing argument. Both cases differ significantly from basic
assertions and flagging and classifying these very specific passages of text will enhance other semantic
annotations.

The basic structure of a conditional is thus found in many utterances, often as a way to specify
presuppositions or assumptions for a given statement. Conditionals consist of two parts, the antecedent
and the consequent, as illustrated in Example 1, where the antecedent (the if part) is underlined and the
consequent spans the remainder of the sentence. Counterfactuals are conditionals where the antecedent
does not hold true.

Example 1 If there were peace, I wouldn’t spend another second here.

While only few NLP systems attempt to model inference, a significant number is concerned with
attributing degrees of factuality to different statements. Before conditional statements can be mined for
their contribution to factivity judgments, they have to be detected. SemEval 2020 Subtask 5.2 (Yang et
al., 2020) is concerned with identifying the span of antecedent and consequent clauses in text. The data
samples consist largely of single sentences, but may involve several sentences. We stipulate that this is
a mainly a structural task and experiment with the grammatical notion of clause boundaries. Encoding
various clause types on top of POS tags and Glove Word Embeddings (WEs) (Pennington et al., 2014),
we find that a clause type layer improves the performance of a baseline of only Glove WEs but barely
improves on a two layer architecture encoding WEs and POS only. However, a two layer architecture
encoding only POS and clause type shows competitive performance at a drastically reduced parameter
space. Our system represented the median in the officially scored systems and demonstrates that simple
grammatical notions can be stable contributors to this task.

2 System description

We cast the task of detecting the spans of antecedent (A), consequent (C), and other text (O) as a sequence
labeling task. For an input sequence of n tokens Si = 〈wi1 , wi2 , . . . , win〉, we predict a sequence of
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target labels Ŷi = 〈ŷi1 , ŷi2 , . . . , ŷin〉, where ŷik ∈ {A,C,O} for each token k in sample i. The task
data, however, is presented as a sequence of characters and gold annotations use intervals of character
offsets: Anti = 〈chanti1 , chanti2 , . . . chantil 〉 is the interval of antecedent characters labelled A in Si,
Coni = 〈chconi1

, chconi2
, . . . chconim

〉 is the character interval for the consequent, labelled C.

Preprocessing We define a strict input mapping f between character labels and token labels, with

f(wk = 〈chk1 , . . . chkj 〉) =


A if chki ∈ Anti for 1 ≤ i ≤ j
C if chki ∈ Coni for 1 ≤ i ≤ j
O otherwise

The corresponding output mapping trivially maps the label of a token to all its constituent characters.

2.1 Grammatical features
The task describes a strict grammatical pattern. (Kuncoro et al., 2018) observe that LSTMs are not strong
on grammatical relations and they show that providing grammatical information can significantly improve
LSTM performance. In this spirit, we extract grammatical features using a GATE pipeline with the ANNIE
English Tokeniser (Cunningham et al., 2002), OpenNLP POS tagger (Apache Software Foundation, 2014),
Stanford Parser (Klein and Manning, 2003) to extract POS tags and constituent tags S, SBAR, and SINV.

Example 2 CLaC system token annotations: T=input token, P=POS, C=clause, L=output label

T: If there were peace I would n’t spend another second here .
P: IN EX VBD NN PRP MD RB VB DT NN RB .
C: SBAR SBAR SBAR SBAR S S S S S S S EOS

L: A A A A C C C C C C C O

POS tag Content words do not greatly impact this task, thus the reduction of input tokens to their POS
tags should illuminate the structural patterns. The Stanford Parser uses the Penn Treebank tagset with
45 tags (36 main tags and 9 tags for punctuation, parenthesis, etc.) The Penn Treebank tag IN includes
prepositions like on and subordinating conjunctions like that, masking an important clue for the potential
start of a consequent. We thus introduce an additional POS tag SC for subordinating conjunctions. This
brings the number of POS tags used to 46.

POS Penn Treebank tagset (45 tags)
POS1 assigns that to new POS tag SC
POS2 assigns that and then to SC

In ablation studies on a single layer architecture (that is, making the POS sequence the only input
stream), POS2 performs better than POS1 and POS (see Table 1).

Clause tag Antecedent and consequent are clauses. To assist detection of the correct clause boundaries,
we train a layer for relevant clause boundaries as determined by the Stanford parser.

The Penn Treebank tagset has 5 tags for clause constituents: S for simple declarative clauses, SBAR for
complement clauses possibly introduced by a subordinating conjunction, SBARQ for direct questions
introduced by a wh-word or a wh-phrase, SINV for inverted declarative sentences and SQ for inverted
yes/no questions, or SBARQ for main clauses of a wh-question, following the wh-phrase (Bies et al.,
1995).

In the general case, the antecedent is a subordinate clause, while the consequent is the main clause.1

Subordinate clauses are labelled as SBAR, we select the lowest SBAR label on the path from a token to
the sentence root for SBAR annotations in the input sequence. The same is true for the SINV label. Main
clauses, however, are parents to subordinate clauses, not sisters, requiring a different processing.

We experiment with four variants, distinguished by the number and type of clauses included (φ specifies
the number of tags encoded):

1Some data samples do not have both, but consist only of an antecendent or a consequent.
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CL1 encodes S, SBAR, φ = 2

CL1-1 encodes S, SBAR, SINV, φ = 3

CL1-2 encodes S, SBAR and additionally recodes SINV as SBAR, φ = 2

CL2 encodes S, Sm, SBAR, φ = 3

CL2-1 encodes S, Sm, SBAR, SINV, φ = 4

CL2-2 encodes S, Sm, SBAR and additionally recodes SINV as SBAR, φ = 3

Clause level constituent tags are extracted from the parse tree. Let path(wik) be the the ordered multiset
of constituent labels on the path from token wik to the sentence root.

Clause level constituent tag encoding CL1 Let wik be a input token.

gCL1(wik) =

{
SBAR if SBAR ∈ path(wik)
S otherwise

CL1 is modelled on the simplest conditional statements. A refined version distinguishes a wider variety
of patterns, namely between S for root clauses, Sm for embedded main clauses, and SBAR and SINV for
subordinate clauses.

Clause level constituent tag encoding CL2-1

gCL2−1(wik) =



SBAR if SBAR ∈ path(wik , root)
SINV if SINV ∈ path(wik , root)
S SBAR,SINV 6∈ path(wik , root)

and there is exactly one S ∈ path(wik , root)
Sm if SBAR,SINV 6∈ path(wik , root)

and there is more than one S ∈ path(wik , root)

2.2 Architecture
Word embeddings We initialize the embedding layer of the respective models with Glove2 pre-trained
word vectors, fine-tuned during training. For input sample Si = 〈wik , ..., win〉 letXi = 〈xi1 , xi2 , . . . , xin〉
denote a sequence of word embeddings xik ∈ Rd, d = 300, where xij is the embedding for token wij .

Multi-task stacked Bi-LSTMs Our submitted system used 3 layers of Bi-LSTMs stacked on top of
one another, all with input dimensionality dinput = 300 and hidden dimensionality dh = 150. The first
layer of the Bi-LSTM receives the embedding sequence Xi. The output stream of layer 1 feeds into layer
2, the output stream of layer 2 feeds into layer 3.3

Inspired by (Søgaard and Goldberg, 2016), the output at each layer is supervised for a different sequence
labeling task by making predictions at each time step (see also Example 2).

layer 1 POS supervision, W1 ∈ R300×ψ, where ψ is the number of POS tags
layer 2 clause supervision, W2 ∈ R300×φ, where φ is the number of clause tags
layer 3 main task supervision, W3 ∈ R300×3

The predicted label ŷlik for time-step k at layer l is determined by a simple linear classifier, parameterized
by Wl:

ŷlik = Softmax(Wl
Txlik) k = 1, . . . , n; l ∈ {1, 2, 3}

where xlik is the representation for token wik at layer l. Wl is the classifier weight matrix at layer l.

2Glove Common Crawl, 840B tokens, 2.2M vocab, cased, 300d vectors
3For single layer and two layer architectures where WEs are not used, the input to the first layer is the POS stream.
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Training paradigm At each forward pass, a layer is randomly selected based on a uniform distribution
and the loss is calculated for the task corresponding to the selected layer. When performing back-
propagation, the parameters of the selected layer as well as the parameters of all lower layers are updated.

Our model is implemented using the PyTorch library (Paszke et al., 2017). The losses at all layers are
computed using Cross-Entropy loss and the network is optimized by the Adam optimizer (Kingma and
Ba, 2014). The learning rate is lr = 5× 10−4 and the network is trained for 7 to 10 epochs.

Post-processing There can only be one antecedent and only one consequent per data sample. Thus,
if our system output shows disjoint regions for either antecedent or consequent, a post-processing step
smooths over the gap.

Example 3 Post processing: T=token, L=system prediction, F= final, post-processed label
T: I would not have started with NAFTA and I would not have started with the Europeans .
L: A A A A A A A O A A A A A A A A O
F: A A A A A A A A A A A A A A A A O

3 Results

We divide the original training set into training (3251 samples) and validation (300 samples) sets.
We present here only a small subset of extensive ablation on our variants. Note that the analysis

presented here refers to our experiments on the validation data only. Table entries for test set performance
are added here only to contextualize the development results.

Single layer baselines Our first observation is that when used in a single layer architecture, POS1
trails our best three layer systems by less than .05 in F1 measure and less than 10 exact matches. POS2
outperforms Glove WE as a single layer baseline in F1, if not in exact matches, see Table 1.

Method PA RA PC RC PO RO P R F1 Match Dev Match(%) Test F1 Test Match(%)
WE .73 .79 .70 .72 .83 .76 .77 .75 .76 71 23.7 .753 20.7
POS .81 .75 .79 .71 .69 .80 .76 .76 .76 70 23.3 .742 19.5
POS1 .69 .74 .81 .74 .73 .74 .75 .74 .74 65 21.7 .760 22.7
POS2 .78 .78 .83 .70 .72 .82 .78 .77 .77 65 21.7 .767 23.2
WE+POS1 .79 .81 .71 .75 .82 .77 .78 .77 .78 85 28.3 .784 30.5
WE+POS2 .83 .80 .72 .78 .80 .77 .78 .78 .78 98 32.7 .786 29.5

Table 1: One and two layer architectures without clause type encodings

Two layer ablations In two layer architectures, POS1 and POS2 perform similarly and both versions
show strengths in different combinations. We note that for this structural task, POS features combine
effectively with WE, as illustrated in Table 14.

In this structural task, two layer architectures that do not use WEs are competitive, as shown in Table 2.
The clause encodings do not perform as well in single layer architectures, but in combination with WE,

they demonstrate an increase in exact matches, as shown in Table 2. Interestingly, two layer architectures
using only POS and clause features rival combinations using WEs but reduce the parameter space to
46× 4.

Three layer architectures The three layer architectures shown in Table 3 outperform two layers in F1
as well as in exact matches for most cases, indicating that the grammatical information encoded is not
sufficient and WEs stabilize and improve performance.

WE+POS1+CL1-1 is our submitted model (highlighted in Table 3). Other versions have identical F1,
but superior exact matches. We see effects of overfitting on our validation set, since the ranking of our
methods on the validation set does not always correspond with the ranking on the actual test set. For
instance, the overall best performer on the validation set (WE+POS2+CL1-2) does not perform equally
well on the test set. Noteworthy is the performance of a two layer architecture with no word embeddings
on the test set: POS2+CL2-2 (Table 2). This presents a much reduced feature space for a very strong
performance.

4Matches are exact matches. Dev Match(%) refers to the percentage of exact matches on the development set, Test Match(%)
refers to the percentage of exact matches on the test set.
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Method PA RA PC RC PO RO P R F1 Match Dev Match(%) Test F1 Test Match(%)
WE+CL1 .73 .80 .73 .76 .86 .77 .79 .77 .78 100 33.3 .773 28.6
WE+CL1-1 .82 .77 .83 .76 .77 .86 .81 .79 .80 101 33.7 .795 30.8
WE+CL1-2 .80 .82 .77 .78 .81 .77 .80 .79 .79 104 34.7 .784 27.7
WE+CL2 .82 .83 .76 .84 .84 .76 .80 .81 .81 104 34.7 .790 28.9
WE+CL2-1 .80 .83 .75 .76 .80 .77 .78 .79 .78 100 33.3 .773 27.4
WE+CL2-2 .85 .80 .75 .81 .81 .81 .81 .81 .81 108 36.0 .786 28.5
POS+CL1 .82 .78 .79 .74 .73 .80 .78 .77 .78 91 30.3 .762 25.0
POS1+CL1 .83 .79 .80 .77 .75 .81 .80 .79 .79 92 30.6 .780 30.3
POS2+CL1 .85 .79 .81 .77 .74 .83 .80 .79 .80 94 31.3 .782 30.9
POS+CL1-1 .83 .77 .78 .72 .70 .80 .77 .76 .76 86 28.7 .759 24.7
POS1+CL1-1 .85 .79 .81 .78 .74 .81 .80 .79 .80 94 31.3 .780 30.2
POS2+CL1-1 .82 .80 .81 .78 .74 .79 .79 .79 .79 89 29.6 .775 30.0
POS+CL1-2 .81 .80 .79 .73 .73 .79 .78 .77 .77 85 28.3 .761 24.2
POS1+CL1-2 .78 .84 .80 .81 .80 .74 .79 .80 .79 96 32.0 .785 28.7
POS2+CL1-2 .80 .77 .81 .68 .71 .83 .77 .76 .76 83 27.7 789 30.3
POS+CL2 .81 .79 .81 .74 .72 .81 .78 .78 .78 90 30.0 .764 26.3
POS1+CL2 .84 .77 .81 .76 .73 .83 .80 .79 .79 95 31.6 .784 31.9
POS2+CL2 .84 .76 .81 .76 .73 .84 .79 .79 .79 93 31.0 .784 29.2
POS+CL2-1 .81 .75 .81 .71 .68 .80 .77 .76 .76 91 30.3 .763 24.5
POS1+CL2-1 .83 .79 .79 .78 .75 .79 .79 .79 .79 102 34.0 .775 31.3
POS2+CL2-1 .84 .79 .80 .79 .76 .81 .80 .80 .80 99 33.0 .782 29.5
POS+CL2-2 .82 .80 .79 .76 .74 .78 .78 .78 .78 89 29.7 .763 24.5
POS1+CL2-2 .84 .79 .81 .77 .76 .83 .80 .80 .80 81 27.0 .789 30.7
POS2+CL2-2 .80 .79 .78 .75 .75 .78 .78 .78 .78 71 23.7 .784 31.2

Table 2: Two layer architectures with clause type supervision

Official results Our official run represented the median for official runs, taking position 6 for precision
(0.81), recall (0.81), and F1 (0.78). The test exact match percentage was 28 and obtained rank 5.

We interpret the consistency in results for precision and recall as a measure of the robustness of
the system. The three layer architecture with clause level encoding was not strictly necessary for our
performance, as WE+POS1 performed better on the test set in exact matches. However, the less balanced
precision (0.864) and recall (0.763) for WE+POS1 on the test set suggests more volatile behaviour.
Inversely, this suggests that clause type encoding has a stabilizing effect and Table 3 shows that including
clause features has the potential for better performance.

Method PA RA PC RC PO RO P R F1 Match Dev Match(%) Test F1 Test Match(%)
WE+POS1+CL1 .87 .83 .84 .78 .73 .79 .80 .81 .80 100 33.3 .786 31.5
WE+POS1+CL1-1 .80 .83 .76 .79 .86 .80 .81 .80 .81 102 34.0 .784 28.2
WE+POS1+CL1-2 .79 .85 .76 .78 .86 .80 .82 .80 .81 107 35.7 .795 29.5
WE+POS1+CL2 .74 .82 .82 .78 .82 .78 .80 .79 .79 101 33.7 .793 30.9
WE+POS1+CL2-1 .79 .84 .70 .75 .86 .78 .80 .78 .79 94 31.3 .795 31.4
WE+POS1+CL2-2 .77 .82 .73 .76 .85 .79 .80 .78 .79 107 35.6 .787 29.6
WE+POS2+CL1 .82 .84 .70 .76 .86 .79 .81 .79 .80 97 32.3 .797 32.0
WE+POS2+CL1-1 .82 .82 .75 .82 .82 .76 .80 .80 80 108 36.0 .792 31.3
WE+POS2+CL1-2 .81 .85 .80 .81 .83 .79 .81 .82 .82 121 40.3 .777 29.9
WE+POS2+CL2 .78 .84 .75 .77 .87 .80 .81 .80 .80 97 32.3 .798 32.6
WE+POS2+CL2-1 .86 .82 .84 .75 .74 .84 .81 .80 .80 100 33.3 .801 32.3
WE+POS2+CL2-2 .86 .84 .86 .74 .75 .86 .82 .81 .81 114 38.0 .788 30.3

Table 3: Three layer architectures including submitted system

4 Conclusion

Our goal was to test the possibility of grammatical information to improve exact matches of antecedent
and consequent span detection. Ablation studies show that grammatical features by themselves form a
solid baseline in a two layer Bi-LSTM architecture and dramatically reduce the parameter space for the
task.

Our experiments demonstrate that multi-task stacked Bi-LSTM models can effectively super-encode
the grammatical features POS and clause type, improving performance for both F1 and exact match
scores. For this task, the difference in outcome barely justifies the increase in complexity for three layers.
However, the combination results in stable systems that operate at the precision-recall break even point and
that (slightly) outperform single and two layer models. They form thus a promising basis for semantically
more complex tasks.
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