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Abstract

Research on definition extraction has been conducted for well over a decade, largely with sig-
nificant constraints on the type of definitions considered. In this work, we present DeftEval, a
SemEval shared task in which participants must extract definitions from free text using a term-
definition pair corpus that reflects the complex reality of definitions in natural language. Defi-
nitions and glosses in free text often appear without explicit indicators, across sentences bound-
aries, or in an otherwise complex linguistic manner. DeftEval involved 3 distinct subtasks: 1)
Sentence classification, 2) sequence labeling, and 3) relation extraction.

1 Introduction

Definition extraction as a complex, real-world task is currently an emerging field of study. Traditional
definition extraction approaches mostly rely on simple, syntactically straight-forward examples with
relatively little variance in vocabulary. Corpora, including the WCL (Navigli et al., 2010) and ukWaC
(Ferraresi et al., 2008), typically consist of “definition sentences” which follow a standard X is a (type)
Y or X, such as Y syntactic structure. Many also contain definitors (Navigli and Velardi, 2010), such
as “means”, “is”, or “is defined by”. We provide a complete review of the existing state of definition
extraction in Spala et al. (2019).

2 Data

The DeftEval task provided data from the DEFT corpus for training, development and testing. Introduced
in Spala et al (2019), the DEFT corpus is currently the largest and most comprehensive corpus explicitly
for definition extraction. In addition to the typical definition-type sentences discussed in the introduction,
the corpus also contains sentence and “sentence windows” of wide variance in syntactic and semantic
construction. Sentences for the corpus were retrieved from the open source textbook website cnx.org, as
well as from various 2017 SEC contract filings from the publicly available US Securities and Exchange
Commission EDGAR (SEC) database. For the DeftEval shared task, participants were only required to
use sentences extracted from textbooks. EDGAR annotations were provided on request, but not required
for participation in the shared task.

The DEFT corpus provides sentence “context windows” for textbook data from cnx.org to narrow
the search space for possible definitions. A context window is defined as a set of three sentences: one
sentence before a sentence containing a potential term (e.g. a bold word), the main sentence with the
potential term, and one sentence after. Though it is certainly possible that some definitions may occur
further away from the bolded mention of the term, for the purposes of the shared task, definitions that
occur outside of the three-sentence window around a potential term are out of scope.

The corpus contains 9 different token labels (see Table1), and 5 different types of relations (see Ta-
ble2). This expanded annotation schema allows for a wide range of data collection, as well as a better
understanding of “non-traditional” definition types (i.e. beyond the typical x is a y structure). With this
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Tag Name Description

Term A primary term
Alias Term A secondary, less common name for the primary term. Links to a term tag.
Ordered Term Multiple terms that have matching sets of definitions which cannot be sep-

arated from each other without creating an non-contiguous sequence of to-
kens. E.g. x and y represent positive and negative versions of the definition,
respectively

Referential Term An NP reference to a previously mentioned term tag. Typically
this/that/these + NP

Definition A primary definition of a term. May not exist without a matching term.
Secondary Definition Supplemental information that may qualify as a definition sentence or

phrase, but crosses a sentence boundary.
Ordered Definition Multiple definitions that have matching sets of terms which cannot be sep-

arated from each other. See Ordered Term.
Referential Definition NP reference to a previously mentioned definition tag. See Referential

Term.
Qualifier A specific date, location, or condition under which the definition holds

Table 1: Tag schema

Relation Name Description

Direct-defines Links definition to term.
Indirect-defines Links definition to referential term or term to referential definition.
Refers-to Links referential term to term or referential definition to definition.
AKA Links alias term to term.
Supplements Links secondary definition to definition.

Table 2: Relation schema

annotation, it is possible to observe long-distance (e.g. cross-sentence) term-definition relationships, as
well as supplemental definition content. Term and definition tags in the schema are treated largely simi-
lar to Storrer and Wellinghoff’s definiens and definitor tags, respectively (2006). A term is defined as a
primary term in a sentence which is accompanied by a definition phrase or sentence within the sentence
context window. Terms are most commonly expressed as noun phrases:

The scientific method is a method of research with defined steps that include experiments and
careful observation.1

Occasionally, terms may appear as verb phrases or other constituent phrases (e.g. adjective phrases):

Many crystals and solutions rotate the plane of polarization of light passing through them.
Such substances are said to be optically active.2

Not including minor tokenization and sentence break fixes made during the shared task, there were
no major modifications to the dataset before use in the DeftEval task. Complete details on the dataset is
discussed in Spala et al. (2019).

3 DeftEval Task

The DeftEval shared task focused on fostering an expanded understanding of definition extraction for
complex data, while keeping results comparable to traditional definition extraction tasks. The shared task,

1https://github.com/adobe-research/deft corpus/blob/master/data/deft files/dev/t1 biology 0 0.deft
2https://github.com/adobe-research/deft corpus/blob/master/data/deft files/dev/t3 physics 1 101.deft

https://github.com/adobe-research/deft_corpus/blob/master/data/deft_files/dev/t1_biology_0_0.deft
https://github.com/adobe-research/deft_corpus/blob/master/data/deft_files/dev/t3_physics_1_101.deft
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which ran from 4 Sept 2019 to 13 March 2020, was comprised of three subtasks: sentence classification,
sequence labeling, and relation extraction.

Participants were provided data in accordance with the DeftEval timeline:

• 15 Aug 2019: Practice data released

• 4 Sept 2019: Training data released

• 19 Feb 2020: Beginning of Subtask 1 and 2 evaluation period, unlabeled test data for Subtask 1 and
2 released

• 1 March 2020: Beginning of Subtask 3 evaluation period, unlabeled test data for Subtask 3 released

• 13 March 2020: End of competition period, labeled test data for all subtasks released

DeftEval was administered using Codalab Competitions, a free, open-source platform for machine
learning competitions and data challenges. Instructions for participation, including details about the
annotation schema and information about the evaluation process, were made available during the practice
and training periods of the shared task. All data and scripts were disseminated through the DEFT Github
repository3, and linked to on the Codalab landing page4. Inconsistencies in the data, bug fixes, and
updates to tokenization errors were made regularly throughout the training period as participants surfaced
questions and potential problems with the dataset.

3.1 Subtask 1: Sentence classification

In keeping with previous definition extraction tasks, we believed it to be important that the DeftEval
shared task included a sentence classification subtask. Participants were provided a script5 to convert
the existing dataset in its sequence-labeling format to individual sentences with a binary label indicating
whether or not the sentence contained a definition. For the purposes of this subtask, only sentences
which contained token sequences labeled as definition in the annotated data were considered “definition
sentences”. Sentences containing only secondary definitions were given a 0 label. Unlabeled test data
for the evaluation period was provided pre-converted in the sentence classification format; participants
were only required to predict the label of each sentence at test time.

3.2 Subtask 2: Sequence labeling

Because of the nature of the expanded annotation in the DEFT corpus in comparison to previous defini-
tion extraction corpora, we believed it to be particularly important that the DeftEval shared task include a
sequence labeling task. The DEFT corpus contains a large amount of auxiliary labels not previously seen
in existing corpora, and the ability to reliably extract these labels could indicate a model with a broader
cabability to identify complex and lengthy definition relationships. Ultimately, we hope for models that
could both extract and pair (as seen in Subtask 33.3) related term and definition labels together, but given
the potential for these two tasks to be particularly difficult and the novel nature of the DEFT corpus, the
tasks were split into two subtasks for DeftEval.

The default format of the DEFT corpus data is similar to the CoNLL 2003 format (Tjong Kim Sang
and De Meulder, 2003) and formatted as BIO data (Ramshaw and Marcus, 1995). Therefore, participants
did not need to convert any of the data for Subtask 2. At test time, participants were provided sentences
where each line contained a token, source text file, lower char bound and upper char bound. Participants
were required to predict only the appropriate BIO tag.

3https://github.com/adobe-research/deft corpus
4https://competitions.codalab.org/competitions/22759
5https://github.com/adobe-research/deft corpus/blob/master/task1 converter.py

codalab.org
https://github.com/adobe-research/deft_corpus
https://competitions.codalab.org/competitions/22759
https://github.com/adobe-research/deft_corpus/blob/master/task1_converter.py
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3.3 Subtask 3: Relation Extraction

The final DeftEval subtask focused on extracting individual term-definition pairs, as well as matching
auxiliary labels to their appropriate root. Without having a precedent for this particular task in the
definition extraction domain, it was difficult to predict the level of difficulty for this task. Given the
nature of existing relation extraction tasks, we expected this task to be particularly complex.

Participants were again able use the default format of the DEFT data for training. At test time, par-
ticipants were provided sentences where each line contained a token, source text file, lower char bound,
upper char bound, BIO tag, and tag ID. Participants were required to predict both the tag ID of the sister
relation and the relationship tag.

3.4 Task Logistics

All participants were required to use the provided data for training, but were allowed to add additional
resources to their training data (e.g. other definition extraction resources, such as WCL, or general
purpose models such as BERT). Additional hand-labeled definition extraction data, proprietary datasets,
or unpublished data not universally accessible was explicitly disallowed. Participants were required to
use the DEFT data as intended, using dev and training data only for training and development. Though
it was only made available during the evaluation periods, participants were also informed that test data
was to be used solely for testing purposes.

During the training period, participants were allowed unlimited submissions to the Codalab practice
and training phases. The practice phase evaluated against the sample ”practice” data, consisting of three
”dummy” files, one for each subtask. The training phase evaluated against the dev set data. Exact copies
of these evaluation data were provided in the Github repository. Participants were able to submit as many
subtasks together as desired, though the evaluation process required that all files in a particular subtask
be present for evaluation. In other words, participants must submit all files in the subtask evaluation set
in order to be evaluated.

Evaluation scripts were also made available on the Github repository so that participants had access
to understand and test the evalaution methods. Participants were encouraged to test their models locally
on their own machines, then compare those results to those provided by the Codalab portal to ensure
the formatting of their submissions were consistent with the Codalab requirements. Participants were
also provided access to sample submissions via the Github repository for both the practice and training
phases.

Each evaluation period ran for 12 days in which participants were able to submit their results through
the Codalab submission process. Because of the nature of the relation extraction task potentially pro-
viding data for the sequence labeling task, the evaluation periods for Subtask 1 and 2 ran concurrently
for 12 days, followed by the 12 day evaluation period for Subtask 3. Each participant was allowed 5
submissions per subtask, primarily to allow for any complications in the submission process. The vast
majority of participants who submitted to the evaluation period used all 5 submissions. We suspect that
many participants used these 5 submission attempts strategically in order to achieve higher results on the
test sets, which should be taken into account for future tasks.

4 Shared Task Results

Over the course of the shared task competition period, 279 submissions were made through the Codalab
training phase, with many participants additionally developing and testing their systems locally. The
evaluation periods brought 217 submissions for Subtask 1, 220 for Subtask 2, and 113 for Subtask 3.
Results are based on the evaluation metrics described in Section 3.

Participants in DeftEval 2020 used a various array of methods for the three subtasks. For Subtasks 1
and 2 (see Tables 3 and 4), many participants opted simply to use a pre-trained language model, especially
BERT, RoBERTa, and XLNet (see Xie et al. (2020), Avram et al. (2020), Singh et al. (2020), Jeawak et
al. (2020), Ranasinghe et al. (2020), and Davletov et al. (2020)). Other implementations incorporated
various LSTM layers in addition to the use of BERT or other transformer architecture (see Zhang and
Ren (2020)).



340

Figure 1: Subtask 1 results; 56 participants, 217 total successful submissions

Figure 2: Subtask 2 results; 51 participants, 220 total successful submissions
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Figure 3: Subtask 3 results; 27 participants, 113 total successful submissions

Rank Team Name Submission
Name

Reference Models

5 ∗ davletov-aa Davletov et al. (2020) Multi-task BERT
6 ACNLP caspa Caspani et al. (2020) RoBERTa + Stochastic

Weight Averaging
12 UNIXLONG unixlong Xie et al. (2020) Joint classification and se-

quence labeling pre-trained
model with MLP and CRF
layer

16 Cardiff Univer-
sity

Shsabah Jeawak et al. (2020) BERT with two-step fine
tuning

18 BERTatDE zhangh2020 Zhang and Ren (2020) BERT with BiLSTM + at-
tention

26 RGCL tharindu Ranasinghe et al.
(2020)

XLNet

32 UPB andrei.avram Avram et al. (2020) RoBERTa with finetuning
40 DSC IIT-ISM kpriyanshu256 Singh et al. (2020) BERT with fine-tuned lan-

guage model
46 DeftPunk deftpunk Soboleva and Kaparina

(2020)
FastText and ELMo embed-
dings with RNN ensemble

47 TüKaPo haemanth Kannan and Pon-
nusamy (2020)

Concatenated GloVe and
on-the-fly POS embeddings
with BiLSTM and 1D-Conv
+ MaxPool layers

Table 3: Subtask 1 submissions and system descriptions.
∗Team name not specified
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Rank Team Name Submission
Name

Reference Models

23 ∗ davletov-aa Davletov et al. (2020) BERT
27 defx marchbnr Hübner et al. (2020) CRF tagger
34 RGCL tharindu Ranasinghe et al.

(2020)
XLNet - large

37 UPB andrei.avram Avram et al. (2020) RoBERTa + CRF with fine-
tuning

Table 4: Subtask 2 submissions and system descriptions.
∗Team name not specified

Rank Team Name Submission Name Reference Models

1 UNIXLONG unixlong Xie et al. (2020) BERT + hand crafted rules
4 ACNLP caspa Caspani et al. (2020) Random Forest

Table 5: Subtask 3 submissions and system descriptions.

Participants were also particularly interested in multi-task solutions for Subtasks 1 and 2, to varying
degrees of success (see Xie et al. (2020), Avram et al. (2020), ?)). Avram et al. (2020) used pre-trained
embeddings, then ”projected the contextualized embeddings generated by the RoBERTa model in three
vectors”, making predictions for all three subtasks with a cohesive architecture.

Some “classic” neural architectures were also used in participant submissions to Subtask 1, includ-
ing Kannan and Ponnusamy (2020)’s LSTM, RNN, and “hybrid” CNN solution, which leverages “the
implicit local feature-extraction performed by the convolutional layers to refine the final representations
passed to the reccurant layer, which accounts for global features.” Ranasinghe et al. (2020) also used
CNN and RNN methods on Subtask 1, in addition to other pretrained architectures.

Subtask 3 submissions (see Table 5) were generally more simple in nature, perhaps due to the issues
discussed in Section 5.2. Xie et al. (2020) used a pre-trained BERT model with some rule-based layers,
and Caspani et al. (2020) used a random forest approach with additional post-processing.

In addition to an array of architectures, DeftEval also sparked conversation around the annotation
schema. Jeawak et al. (2020) point out that the complexity of the schema make this task, as expected,
more difficult than previous definition extraction tasks. They also note that some annotations conflict
with each other in the training and test sets, which may be due to the nature of the schema, as well as the
complicated content of the documents annotated. We recognized this issue, and recommend that future
definition extraction tasks and tasks using the DEFT data consider this. Others mentioned they found that
their initial model explorations came up short; Singh et al. (2020) mention that “owing to the complexity
of the DEFT corpus” their “syntactically aware neural networks” performed lower than expected.

Overall, participants employed a variety of different models, especially those based on pre-trained
transformer architectures for Subtasks 1 and 2 and more “classic” approaches for Subtask 3. Participants
also pointed out discrepancies and issues with the source dataset, which will be accounted for in future
work.

5 Complications

5.1 Ammendments to the DEFT Corpus

The source data for DEFT was extracted by an automatic script that collected and sentence tokenized
content from cnx.org. While modern automatic tokenization methods generally work well in clean envi-
ronments, content scraped from cnx.org often unintentionally includes raw urls, incorrectly parsed text,
and errant html code. Because of this, the tokenization process for the textbook data was particularly er-

cnx.org
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ror prone. Though our annotators and developers spent significant time manually adjusting tokenization
errors, many still existed at the time of release on Github. Many participants discovered these tokenzia-
tion errors during training, which were then verified and fixed via Github issues. Because of the mixed
nature of the source problem for tokenization errors, many caused incorrect sentence tokenization, which
in turn meant that the actual number of sentences in the corpus was different from the reported number in
(Spala et al., 2019). With the existing tokenziation fixes at publication time, the textbook corpus contains
16056 sentences (695627 tokens) and 9439 2-3 sentence context windows.

5.2 Subtask 3 difficulty

In organizing Subtask 3, we believed the task of matching term-definition pairs to be particularly difficult,
especially considering the number of additional possible tags in the DEFT corpus. Given the precedence
of previous performance on other more constrained relation extraction tasks (see also Lin et al. (2016),
Shen and Huang (2016), Sorokin and Gurevych (2017), etc.), we predicted this task would see mostly
low performing scores.

However, participants in the subtask received a median F1 score of 0.9043, with 16 of the 27 partic-
ipants scoring above 0.9. Upon further inspection, we realize this is due to the narrow search space of
the three-sentence context windows. In designing the subtasks, we decided to keep the context windows
in the test set so that the format of the data remained the same between released training data and test
data and to minimize confusion for an already complicated task. Unfortunately, most context windows
only include one set of term, definition, and matching auxiliary tags, meaning that this task was in fact
particularly easy. F1 scores of 1 and near 1 make sense given the fact that models had to predict scenarios
which in many cases only had one possible answer. Only cases that had more than one term-definition
pair had a search space larger than 1.

We recommend that future iterations of this particular task provide sentences in context with the entire
document. Though this does not work with the current format of the DEFT corpus, providing annotated
data in context with the rest of the source textbook is a trivial task. While context windows only show the
range of three sentences and possible distance between term-definition pairs would remain within those
three sentences, providing the full context of the textbook would mean that models would have to discern
term-definition pairs that cross context windows or appear in neighboring sentences. Future tasks may
also consider combining Subtasks 2 and 3 in order to create a more comprehensive and challenging task
overall.

5.3 Concurrent subtask evaluation periods

The evaluation periods for Subtasks 1 and 2 were scheduled to run concurrently in order to maximize
the amount of time alloted for each subtask without extending the official SemEval evaluation period
and to account for the data needs of Subtask 3. While Codalab’s interface allowed for scheduling of two
separate phases which had concurrent dates, the implementation in fact only allows for one phase. As
a solution, we merged the two subtask evaluation phases into one phase which accepted both subtasks’
submissions. Unfortunately, this also meant that individuals were now only provided 5 total submissions
for both subtasks. To handle this, participants were instructed to complete submissions for their Subtask 1
evaluation first, then contact the task organizers to open additional submissions for Subtask 2 evaluation,
keeping their best scoring Subtask 1 results in their submission files so that both Subtask 1 and Subtask
2 scores would be available on the leaderboard. Participants were warned that if their submissions for
Subtask 1 changed with their Subtask 2 data after their 5 alloted submissions, the results would be
removed and they would be subject to removal from the leaderboard.

We recommend future tasks with multiple subtasks using Codalab to either run these subtasks on sep-
arate, non-overlapping dates, or to provide the total number of submissions needed for both subtasks in
the phase instructions, and remove any submissions that exceed the alloted submissions for the individual
subtasks.
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6 Conclusion

Overall, we believe the DeftEval shared task was a successful first exploration of definition extraction
with the DEFT corpus. With more than 400 submissions and 149 registered participants, definition
extraction as a complex, real-world task is clearly of interest to many. We believe that the results from
this shared task provide a baseline for expectations for more complicated definition extraction tasks.

Though this task does not test a production-ready or real-life scenario, where models may have to
predict term-definition pairs in a large document or in a wider context, the task does provide an initial
look at how models perform on broad, non-standard definition extraction annotations. We recommend
that future iterations of this task pay close attention to the effect of the DEFT corpus’ three sentence
context windows at test time, especially as it relates to the differences between an artificially narrow
search space and documents “in the wild”. We also recommend that future research includes a critical
examination of conflicting annotations in the DEFT corpus.

Overall, we believe DeftEval has surfaced questions and research directions relevant to expanding
definition extraction into more complicated linguistic environments, where data is particularly messy
and the natural language it stems from is particularly complex. DeftEval provided a launching point for
the exploration of this type of problem in definition extraction, proved the field interest for such a task,
and laid groundwork for future iterations of definition extraction tasks.
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Marc Hübner, Christoph Alt, Robert Schwarzenberg, and Leonhard Hennig. 2020. marchbnr at semeval-2020 task
6: Joint extraction of concepts and relations for definition extraction. In Proceedings of the 14th International
Workshop on Semantic Evaluation, Barcelona, Spain, December.

Shelan Jeawak, Luis Espinosa-Anke, and Steven Schockaert. 2020. Cardiff university at semeval-2020 task 6:
Fine-tuning bert for domain-specific definition classification. In Proceedings of the 14th International Workshop
on Semantic Evaluation, Barcelona, Spain, December.

Madeeswaran Kannan and Haemanth Santhi Ponnusamy. 2020. Ui at sem-eval 2020 task 6 : Definition mining.
In Proceedings of the 14th International Workshop on Semantic Evaluation, Barcelona, Spain, December.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016. Neural relation extraction with
selective attention over instances. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 2124–2133.

Roberto Navigli and Paola Velardi. 2010. Learning word-class lattices for definition and hypernym extraction.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pages
1318–1327, Stroudsburg, PA, USA. Association for Computational Linguistics.
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