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Abstract

This paper describes DiaSense, a system developed for Task 1 ‘Unsupervised Lexical Semantic
Change Detection’ of SemEval-2020. In DiaSense, contextualized word embeddings are used
to model word sense changes. This allows for the calculation of metrics which mimic human
intuitions about the semantic relatedness between individual use pairs of a target word for the
assessment of lexical semantic change. DiaSense is able to detect lexical semantic change in
English, German, Latin and Swedish (accuracy = 0.728). Moreover, DiaSense differentiates
between weak and strong change.

1 Introduction

Task 1 of SemEval-2020 (Schlechtweg et al., 2020) is concerned with the unsupervised detection of
lexical semantic change (LSC) as reflected by word sense changes over time. More broadly, LSC refers to
changes in meaning of a lexical item. A meaning change is manifested in the gain or loss of a particular
meaning of a word which indicates an increase or decrease in polysemy (Traugott and Dasher, 2001;
Traugott, 2006). A well-known example for LSC which is cited in Tahmasebi et al. (2018) is the historical
evolution of the English word hound which changed from being the general word for ‘dog’ to referring to
only a specific kind of ‘dog’ (‘narrowing’, cf. Traugott (2006)). Meanwhile, dog changed from describing
a specific type of ‘dog’ to becoming the general term for ‘dog’ (‘broadening’, cf. Traugott (2006)).
Moreover, senses can become obsolete and be lost overall, while cultural changes may drive the evolution
of new senses. The main task in SemEval-2020 Task 1 is to identify and evaluate LSC in a set of target
words between two text corpora stemming from two different time periods t1 (earlier period) and t2 (later
period). The investigated languages are German, English, Swedish and Latin. The task is split into two
subtasks: (i) a binary classification task, where it has to be determined whether a target word lost/gained
senses between t1 and t2 or not, and (ii) a ranking task, where target words are ranked according to their
degree of LSC (a higher rank indicates stronger change).

The system presented in this paper is called DiaSense and addresses the LSC tasks by modeling the
different senses of a word via contextualized word embeddings using pre-trained BERT (Devlin et al.,
2018).1 The binary classification and the ranking task are approached by transferring the measures of
change suggested by Schlechtweg et al. (2018), which are originally based on human annotated values
for meaning relatedness, to change metrics calculated on the basis of differences between target word
embeddings. DiaSense is able to detect LSC in the majority of cases in all four languages (average
accuracy 0.728).2 Although the results produced for the ranking task only show a weak correlation with
the gold data (Spearman’s ρ = 0.337), DiaSense is able to distinguish between strong and weak change.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1The source code is provided on https://github.com/christinschaetzle/DiaSense.
2DiaSense was substiantially improved in the post-evaluation phase. We focus on describing the improved version in this

paper, but also provide details about the system in the evaluation phase, i.e., before the ground truth data was released.
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2 Related Work

Over recent years, research on LSC has seen an increasing use of computational methods (see Tahmasebi
et al. (2018) and Kutuzov et al. (2018) for detailed overviews). The methods applied for LSC detection are
manifold, but can be grouped into three classes according to the type of meaning representation involved
(Schlechtweg et al., 2019): (i) semantic vector spaces, (ii) topic distributions, (iii) sense clusters.

In semantic vector space approaches, each target word is represented as a vector at each time stage.
The vector representations are typically based on bag-of-words approaches and represent a co-occurrence
statistics of a word with its context words. Common methods employed for computing vectors from
co-occurrence statistics are Positive Pointwise Mutual Information (PPMI), which measures co-occurrence
strength, and Singular Value Decomposition (SVD), for dimensionality reduction; see, e.g., Levy et al.
(2015), Hamilton et al. (2016), Hellrich and Hahn (2017), Kahmann et al. (2017). Moreover, word
embeddings as generated via the Skip-Gram with Negative Sampling (SGNS) technique (Mikolov et
al., 2013), i.e., word2vec, and GloVe embeddings (Pennington et al., 2014) have been applied to LSC
detection, e.g., Hamilton et al. (2016) and Hellrich and Hahn (2016). As measure of LSC, similarity
across time periods is assessed via calculating the distance/similarity between vectors, using, e.g., cosine
distance (Salton and McGill, 1983), or alternatively via computing differences in the contextual dispersion
of the vectors (see, e.g., Schlechtweg et al. (2019)). In approaches where meaning is represented via
topic distributions (Bamman and Crane, 2011; Lau et al., 2012; Cook et al., 2014), word senses are
derived from topic models based on, e.g., Latent Dirichlet Allocation (LDA; Blei et al. (2003)) and
Hierarchical Dirichlet Processes (HDP, Teh et al. (2006)). Furthermore, the dynamic topic model SCAN
was specifically developed for the investigation of lexical change (Frermann and Lapata, 2016). With
topic modeling, LSC is usually assessed via a frequency-based novelty score assigned to the senses. Sense
clustering based approaches follow similar principles, but are used less often; e.g., Mitra et al. (2015).

Recently, efforts have been made towards developing evaluation standards and datasets for LSC
(Hamilton et al., 2016; Frermann and Lapata, 2016; Schlechtweg et al., 2018; Dubossarsky et al., 2019;
Schlechtweg and im Walde, 2020). For example, Schlechtweg and im Walde (2020) generate simulations
of LSC on the basis of synchronic data, providing a testbed for diachronic LSC, while Schlechtweg et al.
(2019) provide human annotations via the Diachronic Usage Relatedness (DURel) dataset. The current
pitfall of the existing works on LSC is the lack of a common state-of-the-art evaluation task which makes
the comparison of methods difficult. This shortcoming is addressed by SemEval-2020 Task 1.

3 System description

DiaSense measures change by combining word sense representations generated via BERT with LSC
metrics which are based on the calculation of cosine distance as detailed in the following.

3.1 Word sense representations
DiaSense makes use of a semantic vector space approach to represent the lexical semantic content of the
target words. In contrast to previous approaches, which employ static word embeddings as generated
by, e.g., SGNS and GloVe, DiaSense is based on the state-of-the-art contextualized word embeddings
provided by BERT. With static word embeddings, each word is represented via a single vector for each
time period, which is shared by all senses of a polysemous word. Although some contextual information
is captured, it is difficult to differentiate between the senses involved. This problem is alleviated by
contextualized vector representations, where each vector is a function of a whole input sentence, keeping
different word senses apart.

A further advantage of using BERT is that we can leverage the pre-trained models released by Google AI
(Devlin et al., 2018) which spares us the task of training models by ourselves. Pre-trained contextualized
embeddings have proven to be almost as effective as corresponding state-of-the-art models in linear NLP
probing tasks such as part-of-speech tagging (Liu et al., 2019). Wiedemann et al. (2019) furthermore
showed that pre-trained BERT allows for the disambiguation of polysemic words. Being able to use a
pre-trained model is beneficial when working with historical data which is sparse by nature, with a lesser
amount of training data available for the longer-standing past than for more recent time stages. Pre-trained
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static embeddings exist (e.g., fasttext3), but are less applicable to historical data since they usually do
not provide for out-of-vocabulary (OOV) words. Since the vocabulary in historical documents might
differ substantially from the modern vocabulary used for the generation of word embeddings, historical
documents are likely to contain a large amount of OOV words. The token-based approach employed by
BERT on the other hand is designed to include OOV words, handling them via sub-word embeddings.
Moreover, the pre-trained multilingual BERT embeddings allow for a language-independent approach to
LSC, without having to scale to new languages by calculating new embedding matrices and parameters.

Our system is based on bert-as-service (Xiao, 2018), a Python library which uses Google’s BERT
model as sentence encoder, hosting it as service via ZeroMQ4. Bert-as-service is easy to implement
and allows for the mapping of sentences into fixed-length BERT embeddings with just two simple lines
of code. In DiaSense, LSC is assessed separately for each language, but we feed the same model to
bert-as-service, i.e., the cased multilingual 12-layer BERT-base model.5 By default, bert-as-service works
on the second-to-last layer. Bert-as-service makes provision to get contextualized (‘ELMo-like’, cf. Peters
et al. (2018)) word representations from the sentence embeddings. In DiaSense, we compute a sentence
embedding for each sentence a target word occurs in via bert-as-service and take the corresponding target
word embeddings to be representations of the target word’s senses. This is done separately for t1 and t2.
If a target word has been tokenized into several subword units by BERT, we average over all subword
embeddings which belong to the target word, taken from the corresponding sentence embedding.

3.2 LSC metrics

DiaSense was altered substantially in the post-evaluation phase, i.e., after the publication of the ground
truth, with respect to the metrics employed for assessing LSC. We report on the metrics used in the
evaluation and the post-evaluation phase in the following, but focus on the post-evaluation metrics, since
these immensely improved the system’s overall performance (see Section 5).

Evaluation phase In the evaluation phase, the binary classification task was approached via clustering.
We clustered the target word embeddings generated via BERT using the KMeans algorithm as implemented
in scikit-learn (Pedregosa et al., 2011), generating ‘sense clusters’ (with k = 2 as default). Change was
then measured on the basis of a frequency threshold. That is, a word was classified as changing, when a
cluster consisted of at least 90% of embeddings from one corpus only. The ranking task was addressed by
calculating an average embedding for each target word in each corpus. Then, we measured the degree
of change by computing the cosine distance between the average embedding from t1 and the average
embedding from t2 of each target word. Cosine distance (cosine) between two (non-zero) vectors ~x and ~y
is defined on the basis of their cosine similarity (sim), which corresponds to the dot product of the vectors
divided by the product of their Euclidean lengths (Manning et al., 2008):

cosine(~x, ~y) = 1− sim(~x, ~y) = 1− ~x · ~y
‖~x‖‖~y‖

(1)

A cosine distance value close to 0 indicates a low difference and a value close to 1 a high difference. Thus,
we interpreted a large distance as high degree of change in the ranking task in the evaluation phase.

Post-evaluation phase To detect and measure LSC in the post-evaluation phase, DiaSense calculates
several different metrics on the basis of the target word embeddings. The metrics are based on the
measures provided by Schlechtweg et al. (2018) for the assessment of LSC change with respect to DURel
annotations: ∆LATER and COMPARE. DURel contains gold standard annotations for 22 target words with
respect to diachronic LSC in German. The annotations rest upon meaning relatedness scores assigned to
sentence pairs in which a specific word occurs (‘use pairs’), ranging from 1 (unrelated) to 4 (identical). The
scores are inspired by Blank’s (1997) semantic proximity continuum (proximity increases): homonymy >
polysemy > context variance > identity. Thus, a high mean relatedness value between use pairs indicates

3https://fasttext.cc/
4https://zeromq.org/
5https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_

A-12.zip
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meaning identity or context variance and a low value indicates polysemy or homonymy. According to this
rationale, in a scenario of innovative meaning change from t1 to t2 (emergence of a new meaning), the
meaning relatedness in t2 should be lower than in t1, and vice versa when reductive meaning change (loss
of a meaning) takes place.

∆LATER of a word w captures these intuitions and measures changes in the degree of mean related-
ness by substracting w’s mean value in t1 (earlier) from the mean value in t2 (later): ∆LATER(w) =
Meanl(w)−Meane(w). A high positive ∆LATER value shows an increasing relatedness over time and
can be interpreted as reductive meaning change. A low negative ∆LATER in turn indicates innovative
meaning change. In contrast to ∆LATER, COMPARE directly measures the relatedness of a word between
t1 and t2, via the mean value of relatedness scores assigned to use pairs which consist of a sentence from
t1 and a sentence from t2 (with COMPARE(w) = Meanc(w)). COMPARE measures the degree of change
(Schlechtweg et al., 2018), with a high value indicating weak and a low value indicating strong change.

Instead of assigning relatedness ranks to use pairs, DiaSense captures relatedness between target word
embeddings via cosine distance. In doing so, a high cosine distance between target word embeddings can
be interpreted as low meaning relatedness, while a low cosine distance value indicates a high meaning
relatedness. To compute ∆LATER(w), we calculate the cosine distances between all embeddings of a
target word in t2 and assign the mean value of these distances to Meanl(w). We proceed similarly for t1
to compute Meane(w) and calulate ∆LATER(w) analogously to Schlechtweg et al. (2018) as difference
between Meanl(w) and Meane(w). Using cosine distance allows for the intuitive interpretation of a
high positive value for ∆LATER as innovative meaning change and a low negative value as reductive
meaning change. COMPARE(w) is computed by calculating the mean of cosine distances between all use
pairs where one embedding is from t1 and the other is from t2. In turn, the values must be interpreted
inversely on the basis of cosine distance: a high COMPARE value indicates strong change, while a low
value is an indicator of weak change.

Additionally, Schlechtweg et al. (2018) suggest for future research to normalize COMPARE with respect
to polysemy in order to be able to differentiate between context variation and real diachronic change.
Therefore, they propose to substract the mean relatedness value of the earlier time period, i.e., Meane(w),
from COMPARE and calculate ∆COMPARE in this way. However, this only captures the variation in
the earlier period, not accounting for the whole variation present in the two corpora. Thus, instead of
substracting the mean value of the earlier period, we propose to calculate ∆COMPARE by substracting
the mean cosine distance between all target word embeddings from C1 and C2, without differentiating
between periods. In this way, we can capture the amount of within variation across both corpora.6

4 Experimental setup

Data For each language, two corpora C1 and C2 (for t1 and t2) and a set of target words were provided
in the task. The corpora were pre-processed in that punctuation, empty and one word sentences were
removed. Additionally, all sentences were lemmatized and are randomly shuffled within each corpus.
This is meant to mimic the challenging nature of historical linguistic data, where incomprehensible and
incomplete data is the norm rather than the exception. For English, C1 and C2 consist of data from the
CCOHA corpus (Alatrash et al., 2020), representing the time stages 1810-1860 (t1) and 1960-2010 (t2).
C1 for German contains texts from 1800 to 1899 taken from the DTA corpus (Deutsches Textarchiv, 2017),
and combines data from two newspaper corpora (Berliner Zeitung7, Neues Deutschland8) for C2, with
data from 1946 to 1990. For Latin, data was taken from the LatinISE corpus (McGillivray and Kilgarriff,
2013). C1 features data from the beginning of the second century to the end of the first century BCE,
while C2 contains data from the beginning of the first century to the end of the twenty-first century CE.
The Swedish corpora are based on data from KubHist (Asedam et al., 2019), with data from 1790-1830
for C1 and from 1895-1903 for C2. Overall, the application scenario is broad with corpora covering four
languages, whilst spanning over time stages which differ in terms of their chronological depth and length.

6We experimented with both ways of normalizing COMPARE and achieved better results with our version of ∆COMPARE.
7http://zefys.staatsbibliothek-berlin.de/index.php?id=155
8http://zefys.staatsbibliothek-berlin.de/index.php?id=156
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Figure 1: Ranked ∆LATER values for all German target words.

Parameters of change For each language and each target word, we compute ∆LATER, COMPARE and
∆COMPARE. The BERT embeddings for each target word per time period are based on a maximum
number of 500 sentences.9 The binary classification task is addressed via ∆LATER since the metric
measures changes in the mean relatedness of words over time (Schlechtweg et al., 2018). The target words
are ranked according to ∆LATER and we take the top ranked target words, i.e., the highest positive and
lowest negative values, to undergo LSC, see, e.g., Figure 1 for German. The thresholds for the binary
classification were experimentally defined on the basis of these ranks and vary across languages. That is,
we plotted the ranked target words as shown in Figure 1 and defined the thresholds on the basis of the
points in the plot where the distribution begins to become skewed to the left and right respectively. The
results for the ranking task are based on the absolute ∆COMPARE values, i.e., the normalized version
of the COMPARE measure which differentiates between weak and strong change (Schlechtweg et al.,
2018), thus measuring the degree of change. Moreover, we calculate the standard deviation (sd) of cosine
distances in the earlier and in the later group to provide a measure of the context variation in each corpus.

Evaluation In SemEval-2020 Task1, the system is evaluated with respect to its performance on the
binary classification and the ranking task. The evaluation of the binary classification output is based
on accuracy measured against the true binary classification as annotated by humans. The output of the
system for the ranking task is evaluated using Spearman’s rank correlation coefficient (ρ) by calculating
the correlation between the produced values and the true ranks as annotated by humans. For a detailed
description of the gold data please see Schlechtweg et al. (2020).

5 Results

DiaSense has been significantly improved after the publication of the ground truth for SemEval-2020
Task 1. Before this, the system showed a comparably low performance in the evaluation phase, with an
average accuracy of 0.554 in the classification task (rank 17 of 21) and ρ = 0.234 in the ranking task
(rank 14 of 21); see Schlechtweg et al. (2020) for the full rankings. We attribute the low performance
in the binary classification to two factors: For one, k = 2 might not have been the optimal parameter for
KMeans clustering for all target words. We experimented with approaches to automatically determine
k, but did not arrive at a suitable solution. For another, cluster initialization turned out to be difficult
with the pre-trained BERT embeddings, since distances between the embeddings are generally low (cf.
Reimers and Gurevych (2019) on clustering issues with pre-trained BERT embeddings). In addition, the
frequency threshold employed for identifying change in the clustering was arbitrarily defined. The low
performance in the ranking task could be the result of averaging the embeddings, where context variation

9This number was sufficient to reliably model the metrics, while maintaining a manageable computing time. However,
occurrence frequencies of target words vary across target words and corpora. For example, in the German C2, Entscheidung
‘decision’ occurs over 8 000 times, Ohrwurm ‘earwig/catchy tune’ appears only roughly 100 times.



55

might substantially bias the resulting vectors. Given these shortcomings, we decided to opt for alternative
ways of measuring LSC, experimenting with ∆LATER and ∆COMPARE instead.

Currently (post-evaluation), the system ranks third in the binary classification with an overall average
accuracy of 0.728 (English: 0.649, German: 0.771, Latin: 0.750, Swedish: 0.742).10 In the ranking task,
DiaSense occupies rank 14 with ρ = 0.337 (English: 0.293, German: 0.414, Latin: 0.343, Swedish: 0.300).
Exemplary, we discuss the results for German in the following.11

For German, the words with the highest positive ∆LATER (innovative meaning change) are abgebrüht
‘boiled out/indifferent’, abdecken ‘cover/unroof/blanket’, Tier ‘animal’, Festspiel ‘festival’, abbauen ‘win
(mining)/reduce’, artikulieren ‘articulate/enunciate’, Titel ‘title’ and Rezeption ‘reception’ (see Figure 1-
left). In the ground truth, abgebrüht, Tier, Festspiel, and Titel are not classified as change. We can confirm
Tier and Titel as false positive. Tier and Titel show high standard deviations in both t1 and t2 (with sd >
0.04), indicating that they exhibit a high context variation overall instead of undergoing a meaning change.
However, standard deviation does not provide insights into whether Festspiel and abgebrüht are false
positives. Instead, Festspiel shows a large difference between t1 and t2 based on a frequency effect (51
occurrences in C1, > 500 occurrences in C2). Yet, since data sparsity is an inherent problem of historical
corpora, we can not exclude Festspiel as easily. Moreover, abgebrüht indeed shows LSC on the basis of
our data: In t1, abgebrüht is almost exclusively used as participle of the verb abbrühen ‘boil out’, while it
occurs mostly as adjective with the more figurative meaning ‘indifferent’ in t2.

The target words überspannen ‘span/overstretch/straddle’, Fuß ‘foot’, Abgesang ‘last verse (min-
nesong)/swansong’, Schmiere ‘grease/lookout’, Knotenpunkt ‘junction/intersection’, Ohrwurm ‘ear-
wig/catchy tune’ have the lowest negative values (reductive meaning change), see Figure 1-right. Similarly
to abgebrüht, Fuß is not classified as undergoing LSC in the gold data, but can in principle be identified
as change: While in t1 Fuß is still frequently used as measure unit, this meaning only occurs scarcely in
t2. Overall, the system performs well when it comes to the identification of large changes. For example,
Ohrwurm, which shows the highest (absolute) ∆LATER value in German, changed quite drastically from
being mainly used in the meaning of ‘earwig’ in t1 to almost exclusively denoting a ‘catchy tune’ in t2.
However, the system fails to identify smaller scale changes such as, e.g., Manschette ‘sleeve/cuff’, where
meanings are close and occur in similar contexts.

DiaSense performs less well in the ranking task as in the classification. However, although the correct
ranking could not be identified, DiaSense puts the target words into similar regions, i.e., words with high
∆COMPARE values (e.g., Ohrwurm, abgebrüht) generally rank high, indicating strong change and vice
versa. Moreover, without normalizing COMPARE, Titel and Tier ranked highest – an error which was
avoided by using ∆COMPARE instead.

6 Conclusion

In this paper, we presented DiaSense, a system developed for SemEval-2020 Task 1. Based on contextu-
alized word embeddings, DiaSense is able to identify change in English, German, Latin and Swedish,
while also differentiating between weak and strong change. Our approach leverages the strength of
pre-trained BERT embeddings for modeling word senses language-independently and avoids the necessity
of large amounts of training data which is beneficial for historical linguistic work. Moreover, we were
able to translate metrics developed to capture human intuitions about meaning relatedness into automated
measures of LSC. Still, DiaSense was not able to predict the correct ranking in terms of degrees of LSC.
We will address this issue in future research, experimenting with further measures and techniques.
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