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Abstract

We investigate the hypothesis that translations can be used to identify cross-lingual lexical
entailment. We propose novel methods that leverage parallel corpora, word embeddings, and
multilingual lexical resources. Our results demonstrate that the implementation of these ideas
leads to improvements in predicting entailment.

1 Introduction

In this paper, we discuss the University of Alberta systems for SemEval-2020 Task 2: Predicting Multilin-
gual and Cross-Lingual Lexical Entailment (Glavas et al., 2020). We focus on the subtask of cross-lingual
binary lexical entailment (LE). Vyas and Carpuat (2016) define this task as “the task of detecting whether
the meaning of a word in one language can be inferred from the meaning of a word in another language.”
They note its potential applications to machine translation, question answering, as well as to cross-lingual
inference and entity linking. LE is related to hypernym detection, with the former being more general
(Upadhyay et al., 2018).

Our principal objective is to provide evidence for the hypothesis that translations are useful in predicting
cross-lingual entailment. It has been observed in prior work on cross-lingual lexical semantics that
translations may be broader in meaning than the original text (Bentivogli and Pianta, 2000; Rudnicka et al.,
2012). In particular, translations may represent concepts entailed by the translated concept. For example,
from the English phrase “you gave me the bottle”, and its Italian translation “mi hai dato il contenitore”,
it can be inferred that bottle entails contenitore (“container”).! We are interested in leveraging this
phenomenon to perform unsupervised LE prediction.

Our use of bitexts, word embeddings, and multilingual wordnets builds upon prior work. Qiu et al.
(2018) observe that similar words share entailments, and so semantic similarity can be used to detect
additional entailment pairs. Cross-lingual word embedding similarity has been used by Hauer et al. (2017)
to identify translations, and by Hauer et al. (2019) to detect frequent word senses. Mehdad et al. (2011)
leverage bitext alignment for textual entailment.

The principal contribution of this paper is the presentation and evaluation of LE prediction methods
that leverage: (1) translation mining for entailment classification; (2) monolingual word embeddings for
expanding the set of entailment pairs; and (3) multilingual lexical resources for improving translation
alignment. To the best of our knowledge, we are the first to apply these ideas to cross-lingual LE prediction,
and demonstrate that each of them improves LE prediction performance, especially in a low-resource
setting.

2 Methods

In this section, we outline our bitext-based approach to predicting cross-lingual entailment. Section 2.1
describes our base method, BITEXT, which mines entailment pairs from word alignments in a bilingual
parallel corpus. Section 2.2 describes an enhanced method, VECTORS, which identifies additional
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Figure 1: Two methods for identifying cross-lingual entailment.

entailment pairs based on estimates of semantic similarity. Section 2.3 outlines our use of a knowledge-
based alignment method, BABALIGN, to further improve entailment coverage.

2.1 Entailment via Alignment

Our basic method, which we call BITEXT, represents the key idea of our approach: lexical translation
captures entailment relations. The method uses automatic word alignment of bitexts to mine translation
pairs. We make the assumption that a word and its translation either represent the same concept or one
entails the other. Therefore, we make a working assumption that a bitext alignment link between a pair
of words indicates an entailment relation between them. We expect that in most cases the relation is
synonymy or equivalence, but a subset of the word pairs may involve hypernymy instead. How to detect
the direction of such entailments is an open question.

Our implementation of the above insight starts by performing word alignment of a sentence-aligned
bitext, and then extracts all aligned pairs of words. Given a test instance of LE prediction, we simply
check whether the two words are among the aligned pairs to obtain a binary classification. Figure 1 shows
the BITEXT methods in action: the English word jug is found to entail the Italian word contenitore if it is
aligned to it in the bitext. Note that the BITEXT methods makes no use of word similarity.

2.2 Semantic Expansion

Our second method, which we refer to as VECTORS, expands upon the BITEXT method outlined in the
previous section. The coverage of the latter is limited by the number of translation pairs in the aligned
bitext. For example, if jug is never translated as contenitore in the bitext, the BITEXT method will fail to
identify the entailment between the two words. However, the bitext may contain another word, such as
bottle, that is both aligned to contenitore and semantically similar to jug. This observation motivates the
VECTORS method. The intuition behind this method is that semantically similar words tend to entail the
same set of words.

In addition to checking whether an input word pair is aligned in the bitext, the VECTORS method
searches for aligned words that are semantically similar. Implementation of this method requires an
automated way of measuring semantic similarity between words. We use the well-known measure of
cosine similarity between monolingual word embeddings. The word embeddings are trained independently
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on each side of the bitext. If the cosine similarity of two words is not less than a tunable threshold, the
words are deemed to be semantically similar. Note that the search for similar words is performed only
with respect to the first of the words in a given instance, which may entail the second word.

Figure 1 shows an example of applying the VECTORS method. Although jug is not translated as
contenitore in the bitext, the method is still able to detect the entailment, based on the semantic similarity
between jug and bottle.

2.3 Knowledge-Based Alignment

Both of our methods are dependent upon accurate alignment. Therefore, in addition to an off-the-
shelf alignment tool, FASTALIGN (Dyer et al., 2013), we also apply a new knowledge-based alignment
algorithm, BABALIGN (Luan, 2020). We first obtain all possible translations for all content words in
the trial, development, and test sets from a multilingual lexical resource, such as BabelNet (Navigli and
Ponzetto, 2012). To bias FASTALIGN, we append the obtained translation pairs to the lemmatized bitext.
We then use the sets of translation pairs again to post-process the generated alignment: if FASTALIGN
failed to link a source content word to a target content word, we attempt to align the word to its translation.
We apply this process in both translation directions.

3 Experiments

In this section, we describe the details of our experiments, including tools, setup, results, and implications.
At the end, we discuss an additional experiment in which we use the hypernymy relation in BabelNet as a
proxy for lexical entailment.

3.1 Tools and Resources

Our bitexts are from the OpenSubtitles> project (Lison and Tiedemann, 2016; Tiedemann, 2016). Table 1
shows the corpus size for each language pair. We lower-case all text, and tokenize by white space and
punctuation.

To improve coverage, we experiment with performing lemmatization prior to alignment. We employ
TreeTagger (Schmid, 1999; Schmid, 2013) for English, German and Italian, and reldi-tagger (Ljubesic et
al., 2016) for Croatian. No lemmatization was done for Turkish and Albanian, due to the unavailability of
lemmatizers.

Languages de-en de-hr de-it  en-it

lines 22.5M 13.8M 13.6M 35.2M
bytes 277G 1.0G 1.1G 2.6G

Table 1: The bitext size in the high-resource setting.

For the purpose of computing word similarity in the VECTORS method, we generate word embeddings
using the skip-gram model of word2vec (Mikolov et al., 2013). We set the vector dimensions to 200, the
context window size to 10, and run word2vec for 25 iterations. All other parameters affecting the vectors
are left at their default values.

3.2 Experimental Setup

We perform experiments in two settings: low-resource (LR) and high-resource (HR). In the LR setting,
bitexts are limited to one million randomly selected sentence pairs, and no lemmatization is used. The HR
setting is suitable to evaluate the impact of the knowledge-based alignment. For FASTALIGN, we apply
lemmatizers after the alignment. For BABALIGN we first extract from BabelNet all possible translations
of the tested lemmas, which are then used to guide the alignment process.

The VECTORS method has a tunable parameter: the cosine similarity threshold for deciding semantic
similarity. We tune the threshold on the official trial data set of each language pair, if such a set is provided,

2http: //opus.nlpl.eu/OpenSubtitles2018.php
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or the development data otherwise. For surprise language pairs we instead adopt a threshold value of 0.25
based on the tuning results for the other language pairs. All development (including the formulation of the
various system configurations) and parameter tuning was performed using only the trial and development
data. While the VECTORS method, with BABALIGN, represents our most sophisticated method, we also
tested simpler configurations, to facilitate a more comprehensive analysis.

3.3 Test Results

Table 2 shows our low-resource results on the test sets. As can be seen, the incorporation of word
embeddings results in an average F-score improvement of 30%.

Method  de-en de-hr de-it de-sq de-tr en-hr en-it en-sq en-tr hr-it hr-sq hr-tr it-sq it-tr sq-tr Average
BITEXT 247 114 214 208 17.1 192 264 205 21.6 259 254 20.1 32.0 245 250 224
VECTORS 63.1 47.6 49.6 432 464 642 679 520 612 554 464 444 50.7 522 438 525

Table 2: F-score on the test sets in the low resource (LR) setting.

Table 3 shows the results in the high-resource setting on a subset of four language pairs. (For comparison,
the low-resource results are copied from Table 2.) Our complete system is the VECTORS method
combined with our knowledge-based alignment, BABALIGN, which demonstrates the best F-score of
64.5%, averaged over four language pairs. We were unable to obtain results for all language pairs due to
time and resource constraints. Moreover, our knowledge-based alignment method, BABALIGN, yields
clear improvements over the standard alignment for both BITEXT and VECTORS methods on all language
pairs. The VECTORS method is substantially more accurate than the BITEXT method in the high-resource
setting as well.

Method Alignment  Setting de-en de-hr de-it en-it Average
FASTALIGN LR 247 114 214 264 21.0

BITEXT FASTALIGN HR 312 326 263 602 37.6
BABALIGN HR 524 41,5 409 61.5 49.1
FASTALIGN LR 63.1 47.6 496 679 57.0

VECTORS FASTALIGN HR 650 547 517 743 61.4
BABALIGN HR 70.7 55,5 566 753 64.5

Table 3: F-score on the test sets in both low-resource (LR) and high-resource (HR) settings.

As the shared task only permits the submission of three sets of results, the VECTORS results represent
our official three submissions. The BITEXT results are unofficial. The F-scores for the BITEXT methods
on the test set were provided to us by the organizers. However, since the precision and recall on the test
set were not provided, we present the detailed evaluation results of our best model on the development
set in Table 4. Overall, the test results of our complete system in Table 3 and its development results in
Table 4 constitute a strong proof-of-concept.

Languages True Pos. False Pos. True Neg. False Neg. Precision(%) Recall(%) F1(%) Accuracy(%)
de-en 167 151 76 24 52.5 87.4 65.6 58.1
de-hr 139 150 131 33 48.1 80.8 60.3 59.6
de-it 122 149 134 41 45.0 74.8 56.2 57.4
en-it 201 99 89 17 67.0 92.2 77.6 71.4

Table 4: Detailed evaluation results on the development sets for our best method of VECTORS using
BABALIGN in the HR setting.
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3.4 Error Analysis

The VECTORS method is an expansion of the BITEXT method. For any test instance, if BITEXT returns
a positive classification, then VECTORS does so as well. Thus the set of entailment relations reported
by the former is a subset of the entailment relations reported by the latter. Consequently, VECTORS
reduces the number of false negatives, at the cost of a higher number of false positives. Overall, the result
is a substantial net gain in LE prediction accuracy. For example, on the English-Italian test set in the
low-resource setting, precision drops from 82% to 62%, but the recall increases from 14% to 75%.

For instance, consider the entailment of English plant by Italian rosa “rose”. Since these words are
not aligned in the English-Italian bitext, the BITEXT method returns a false negative. However, the
VECTORS method identifies fiore “flower” as semantically similar to rosa, and correctly returns a positive
classification because the word plant happens to be translated as fiore in the bitext.

One weakness of the bitext-based methods is the inability to distinguish the direction of an entailment
relation. This can lead to false negatives, an issue which the VECTORS method sometimes exacerbates.
For instance, Italian creatura “creature” does not entail English wolf. However, VECTORS incorrectly
predicts otherwise, because creatura and animale “animal” are semantically similar, and animale is found
to be aligned with wolf.

Another source of errors are non-literal translations. For example, the English phrase automobile key is
translated in the bitext as chiave di accensione “ignition key”. This leads to the incorrect conclusion that
automobile is entailed by accensione “ignition” and similar words.

Finally, lemmatization was found to reduce the number of alignment errors. For instance, the Italian
word-form orchidea is over 10 times less frequent in the bitext than its plural form orchidee, which results
in the singular (i.e., lemma) form often being misaligned by the cooccurrence-based alignment algorithm.
This in turn prevents the BITEXT method from identifying the entailment between orchidea and flower.

3.5 Cross-lingual Entailment in BabelNet

Since lexical entailment is closely related to the hypernymy and hyponymy relations, we decided to
investigate the effectiveness of a baseline strategy based on BabelNet. In order to make a LE prediction,
we simply check whether two words in a given instance are connected by a chain of hypernymy links in
BabelNet. For efficiency, we limit the length of a chain to a maximum of five links.

Table 5 shows the results on the development sets of four language pairs, alongside our best system,
the VECTORS method with BABALIGN. The results indicate that BABELNET performs very well,
outperforming VECTORS by over 20% on average.

Method Alignment  Setting de-en de-hr de-it en-it Average
VECTORS BABALIGN  HR 65.6 603 562 77.6 64.9
BABELNET n/a HR 874 816 815 939 86.1

Table 5: F-score on the development sets with the hypernymy-based method.

Analysis of incorrect predictions uncovers at least three different sources of errors. First, certain
entailment relations involve words that are far apart in BabelNet; for instance, English animal is found 7
hypernym links above Italian pinguino. This results in a false negative caused by the five-link height limit.
Second, some semantic relationships are missing in BabelNet; for example the “planet” sense of Pluto has
no hypernym, so its entailment of English planet remains undetected. In addition to the errors of omission,
there are errors of commission. An example is a synset, glossed as “the direction corresponding to the
southwestward compass point”, which contains both English north and Italian sud “south”. This results in
a false positive, because synonyms are considered to entail one another.

The generally high performance of BabelNet-based entailment detection suggests that BabelNet, or a
comparable resource, could be used to compensate for the limitations of our method (see Section 3.4). For
example, BabelNet could be used to filter out translation pairs which are related by synonymy, rather than
entailment, or to verify the direction of an entailment relation.
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4 Conclusion

We have demonstrated a strong connection between translations and cross-lingual entailment. The sparsity
of the translation data can be alleviated by the use of semantic similarity between word embeddings.
Finally, applying knowledge-based word alignment results in substantial improvements in identifying
entailment in bitexts.
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