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Abstract

In this paper, we describe our method for detection of lexical semantic change, i.e., word sense
changes over time. We examine semantic differences between specific words in two corpora,
chosen from different time periods, for English, German, Latin, and Swedish. Our method was
created for the SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. We
ranked 1st in Sub-task 1: binary change detection, and 4th in Sub-task 2: ranked change de-
tection. Our method is fully unsupervised and language independent. It consists of preparing
a semantic vector space for each corpus, earlier and later; computing a linear transformation
between earlier and later spaces, using Canonical Correlation Analysis and Orthogonal Transfor-
mation; and measuring the cosines between the transformed vector for the target word from the
earlier corpus and the vector for the target word in the later corpus.

1 Introduction

Language evolves with time. New words appear, old words fall out of use, the meanings of some words
shift. The culture changes as well as the expected audience of the printed word. There are changes
in topics, in syntax, in presentation structure. Reading the natural philosophy musings of aristocratic
amateurs from the eighteenth century, and comparing with a monograph from the nineteenth century, or a
medical study from the twentieth century, we can observe differences in many dimensions, some of which
seem hard to study. Changes in word senses are both a visible and a tractable part of language evolution.
Computational methods for researching words’ stories have the potential of helping us understand this
small corner of linguistic evolution. The tools for measuring these diachronic semantic shifts might
also be useful for measuring whether the same word is used in different ways in synchronic documents.
The task of finding word sense changes over time is called diachronic Lexical Semantic Change (LSC)
detection. The task is getting more attention in recent years (Hamilton et al., 2016b; Frermann and
Lapata, 2016; Schlechtweg et al., 2017). There is also the synchronic LSC task, which aims to identify
domain-specific changes of word senses compared to general-language usage (Schlechtweg et al., 2019).

Tahmasebi et al. (2018) provides a comprehensive survey of techniques for the LSC task, as does Ku-
tuzov et al. (2018). Schlechtweg et al. (2019) evaluated available approaches for LSC detection using the
DURel dataset (Schlechtweg et al., 2018). Some of the methodologies for finding time-sensitive mean-
ings were borrowed from information retrieval techniques in the first place. According to Schlechtweg
et al. (2019), there are mainly three types of approaches. (1) Semantic vector spaces approaches (Gu-
lordava and Baroni, 2011; Kim et al., 2014; Xu and Kemp, 2015; Eger and Mehler, 2016; Hamilton et
al., 2016a; Hamilton et al., 2016b; Rosenfeld and Erk, 2018) represent each word with two vectors for
two different time periods. The change of meaning is then measured by the cosine distance between the
two vectors. (2) Topic modeling approaches (Wang and McCallum, 2006; Bamman and Crane, 2011;
Wijaya and Yeniterzi, 2011; Mihalcea and Nastase, 2012; Cook et al., 2014; Frermann and Lapata, 2016;
Schlechtweg and Walde, 2020) estimate a probability distribution of words over their different senses,
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i.e., topics. (3) Clustering models (Mitra et al., 2015; Tahmasebi and Risse, 2017) are used to cluster
words into clusters representing different senses.

We participated in the SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection
(Schlechtweg et al., 2020) competition. In this paper, we describe our solution and submitted systems for
this competition. The task consists of two sub-tasks, a binary classification task (Sub-task 1) and a rank-
ing task (Sub-task 2), which involve comparing usage of target words between two lemmatized corpora,
each drawn from documents from a different time period for four languages: English, German, Latin,
and Swedish. For both sub-tasks, only the target words and two corpora for each language were provided
by organizers, no annotated data. The task is intended to be solved in a completely unsupervised way.

In the binary classification task, the goal is for two given corpora C1 and C2 (for time t1 and t2) and
for a set of target words, decide which of these words changed or did not change their sense (semantic)
between t1 and t2. Change of sense is whether the word lost or gained any sense between the two periods
(corpora). The objective of the Sub-task 2 is for two given corpora C1 and C2, rank a set of target words
according to their degree of lexical semantic change between t1 and t2. A higher rank means a stronger
change. Target words are the same for both sub-tasks.

Because language is evolving, expressions, words, and sentence constructions in two corpora from
different time periods about the same topic will be written in languages that are quite similar but slightly
different. They will share the majority of their words, grammar, and syntax.

The main idea behind our solution is that we treat each pair of corpora C1 and C2 as different lan-
guages L1 and L2 even though that text from both corpora is written in the same language. We believe
that these two languages L1 and L2 will be extremely similar in all aspects, including semantic. We train
separate semantic space for each corpus and subsequently, we map these two spaces into one common
cross-lingual space. We use methods for cross-lingual mapping (Brychcı́n et al., 2019; Artetxe et al.,
2016; Artetxe et al., 2017; Artetxe et al., 2018a; Artetxe et al., 2018b) and thanks to the large similar-
ity between L1 and L2 the quality of transformation should be high. We compute cosine similarity to
classify and rank the target words, see Section 3 for details.

Our systems1 ranked 1st out of 33 teams in Sub-task 1 with an average accuracy of 0.687, and 4th out
of 32 teams in Sub-task 2 with an average Spearman’s rank correlation of 0.481.

2 Data

The corpora are drawn from several sources, described in (Schlechtweg et al., 2020). Table 1 shows
periods and sizes. For each language, items in the earlier corpus are separated from items in the later
one by at least 46 years (German) and as much as 2200 years (Latin). All corpora are lemmatized,
punctuation is removed, and sentences are randomly reordered. For English, target words have been
marked with their part-of-speech. Two example sentences:(1) “there be no pleasing any of you do as we
may”, and (2) “rise upon the instant in his stirrup the bold cavalier hurl with a sure and steady hand the
discharge weapon in the face nn of his next opponent”. (1) illustrates a failure of lemmatization – the
word ’pleasing’, which is a form of the verb ’please’; (2) shows a target word ’face’, marked as a noun.
Less than 10% of the English sentences contain a target word.

Corpus 1 Corpus 2

Language Period # Tokens Period # Tokens # Targets

English 1810-1860 6 559 657 1960-2010 6 769 814 37
German 1800-1900 70 244 484 1946-1990 72 397 546 48
Latin 200BC-1BC 1 751 405 100AD-present 9 417 033 40
Swedish 1790-1830 71 091 465 1895-1903 110 792 658 31

Table 1: Corpus statistics. The last column # Targets denotes the number of target words.

Lemmatization reduces the vocabulary so that there are more examples of each word. It also introduces

1Our code is available at https://github.com/pauli31/SemEval2020-task1
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ambiguity; the decisions to add a POS tag to English target words and retain German noun capitalization
shows that the organizers were aware of this problem.

3 System Description

First, we train two semantic spaces from corpus C1 and C2. We represent the semantic spaces by a
matrix Xs (i.e., a source space s) and a matrix Xt (i.e, a target space t)2 using word2vec Skip-gram with
negative sampling (Mikolov et al., 2013). We perform a cross-lingual mapping of the two vector spaces,
getting two matrices X̂s and X̂t projected into a shared space. We select two methods for the cross-
lingual mapping Canonical Correlation Analysis (CCA) using the implementation from (Brychcı́n et al.,
2019) and a modification of the Orthogonal Transformation from VecMap (Artetxe et al., 2018b). Both
of these methods are linear transformations. In our case, the transformation can be written as follows:

X̂s = Ws→tXs (1)

where Ws→t is a matrix that performs linear transformation from the source space s (matrix Xs) into a
target space t and X̂s is the source space transformed into the target space t (the matrix Xt does not have
to be transformed because Xt is already in the target space t and Xt = X̂t).

Generally, the CCA transformation transforms both spaces Xs and Xt into a third shared space o
(where Xs 6= X̂s and Xt 6= X̂t). Thus, CCA computes two transformation matrices Ws→o for the
source space and Wt→o for the target space. The transformation matrices are computed by minimizing
the negative correlation between the vectors xs

i ∈ Xs and xt
i ∈ Xt that are projected into the shared

space o. The negative correlation is defined as follows:

argmin
Ws→o,Wt→o

−
n∑

i=1

ρ(Ws→oxs
i ,W

t→oxt
i) = −

n∑
i=1

cov(Ws→oxs
i ,W

t→oxt
i)√

var(Ws→oxs
i )× var(Wt→oxt

i)
(2)

where cov the covariance, var is the variance and n is a number of vectors. In our implementation of
CCA, the matrix X̂t is equal to the matrix Xt because it transforms only the source space s (matrix Xs)
into the target space t from the common shared space with a pseudo-inversion, and the target space does
not change. The matrix Ws→t for this transformation is then given by:

Ws→t = Ws→o(Wt→o)−1 (3)

The submissions that use CCA are referred to as cca-nn, cca-bin, cca-nn-r and cca-bin-r where the -r
part means that the source and target spaces are reversed, see Section 4. The -nn and -bin parts refer to a
type of threshold used only in the Sub-task 1, see Section 3.1. Thus, in Sub-task 2, there is no difference
for the following pairs of submissions: cca-nn – cca-bin and cca-nn-r – cca-bin-r.

In the case of the Orthogonal Transformation, the submissions are referred to as ort & uns. We use
Orthogonal Transformation with a supervised seed dictionary consisting of all words common to both
semantic spaces. (ort). The transformation matrix Ws→t is given by:

argmin
Ws→t

|V |∑
i

(Ws→txs
i − xt

i)
2 (4)

under the hard condition that Ws→t needs to be orthogonal, where V is the vocabulary of correct word
translations from source to target space. The reason for the orthogonality constraint is that linear trans-
formation with the orthogonal matrix does not squeeze or re-scale the transformed space. It only rotates
the space, thus it preserves most of the relationships of its elements (in our case it is important that
orthogonal transformation preserves angles between the words, so it preserves the cosine similarity).

Artetxe et al. (2018b) also proposed a method for automatic dictionary induction. This is a fully
unsupervised method for finding orthogonal cross-lingual transformations. We used this approach for
our uns submissions.

2The source space Xs is created from the corpus C1 and the target space Xt is created from the corpus C2.
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Finally in all transformation methods, for each word wi from the set of target words T , we select its
corresponding vectors vs

wi
and vt

wi
from matrices X̂s and X̂t, respectively (vs

wi
∈ X̂s and vt

wi
∈ X̂t),

and we compute cosine similarity between these two vectors. The cosine similarity is then used to
generate an output for each sub-task. For Sub-task 2, we compute the degree of change for word wi as
1− cos(vs

wi
,vt

wi
). The settings of hyper-parameters for both methods give us several combinations, see

sections 4 and 5.

3.1 Binary System

The organizers provided a definition for binary change in terms of specific numbers of usages of senses
of a target word. We decided against attempting to model and group individual word usages. Instead,
we decided to use the continuous scores from Sub-task 2 for the binary task. We assume that there is a
threshold t for which the target words with a continuous score greater than t changed meaning and words
with the score lower than t did not. We know that this assumption is generally wrong (because using the
threshold we introduce some error into the classification), but we still believe it holds for most cases and
it is the best choice. In order to examine this assumption after the evaluation period, we computed the
accuracy of the gold ranking scores with the optimal threshold (selected to maximize test accuracy). As
you can see in Table 2, even if an optimal threshold is chosen, the best accuracy that can be achieved is,
on average, 87.6%.

Avg Eng Ger Lat Swe

acc .876 .838 .854 .875 .936
t - .207 .190 .235 .244

Table 2: Sub-task 1 accuracy with gold ranking and optimal thresholds.

In order to find the threshold t, we tried several approaches. We call the first approach binary-threshold
(-bin in Table 3). For each target word wi we compute cosine similarity of its vectors vs

wi
and vt

wi
, then

we average these similarities for all words. The resulting averaged value is used as the threshold. Another
approach called global-threshold (-gl) is done similarly, but the average similarity is computed across all
four languages. The last approach, called nearest-neighbors (-nn), compares sets of nearest neighbours.
For target word wi we find 100 nearest (most similar) words from both transformed spaces (matrices X̂s

and X̂t), getting two sets of nearest neighbours N s and N t for each target word. Then, we compute the
size of the intersection of these two sets for each target word. From the array of intersection sizes, we
select the second highest value3, and we divide it by two. The resulting number is a threshold for all
target words. If the size of a target word’s intersection is greater or equal to the threshold, we classify
the word unchanged; otherwise changed. This threshold is set for each language independently.

4 Experimental Setup

To obtain the semantic spaces, we employ Skip-gram with negative sampling (Mikolov et al., 2013). We
use the Gensim framework (Řehůřek and Sojka, 2010) for training the semantic spaces. For the final
submission, we trained the semantic spaces with 100 dimensions for five iterations with five negative
samples and window size set to five. Each word has to appear at least five times in the corpus to be
used in the training. For all cca- submissions, we build the translation dictionary for the cross-lingual
transformation of the two spaces by removing the target words from the intersection of their vocabularies.

For cca-nn-r and cca-bin-r we change the direction of the cross-lingual transformation. The initial
setup for the transformation is that the source space is the space of the older corpus C1 (represented by
the matrix Xs), and the target space is the semantic space of the later corpus C2 (represented by the
matrix Xt). We reversed the order, and we use the matrix Xt as the source space, which is transformed
into semantic space (matrix Xs) of the older corpus, i.e. into the original source space.

3We observed that the largest size of intersection is usually significantly greater than the other sizes so we select the second
highest number. We are aware that this is a very simple and data-dependent approach and could be further improved.
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The two other methods are Orthogonal Transformations with identical words as the seed dictionary
(ort) and unsupervised transformation (uns) from the VecMap tool. In these methods, we use median
similarity as the threshold for the binary task. We experimented with a separate threshold for each
language (bin suffix) and with a single global threshold for all the languages (gl suffix).

The sample data provided with the task did not contain any labeled development target words, so we
used the DURel (Schlechtweg et al., 2018) corpus and WOCC (Schlechtweg et al., 2019) corpus4 to
validate our solutions’ performance. The WOCC corpus contains lemmatized German sentences from
Deutsches Textarchiv (Deutsches Textarchiv, 2017) for two time periods 1750-1799 and 1850-1899 ,
which we used to train the semantic spaces. We evaluated our system on the DURel corpus, and we
achieved 0.78 of Spearman’s correlation rank with settings that correspond to the column named cca-
nn-r in Table 3.

5 Results

We submitted eight different submissions for the Sub-task 1 and four for the Sub-task 2 obtained by CCA
and the VecMap tool. We also submitted predictions based on Latent Dirichlet Allocation (Blei et al.,
2003) (LDA), but because of its poor results and limited paper size, we do not include the description
here. The results, along with the ranking5 are shown in Table 3. The bold results denote the best result
we achieved for each language, and the underlined results were used in our team’s final ranking.

Task cca-nn cca-nn-r cca-bin cca-bin-r ort-bin ort-gl uns-bin uns-gl

1

Avg .572 (65) .607 (28) .663 (6) 0.687 (1) .634 (21) .639 (16) .659 (11) .655 (13)
Eng .595 (6) .730 (1) .595 (6) .622 (5) .568 (7) .622 (5) .568 (7) .622 (5)
Ger .521 (14) .542 (13) .812 (1) .750 (3) .750 (3) .688 (6) .750 (3) .646 (8)
Lat .625 (5) .575 (7) .600 (6) .700 (2) .575 (7) .600 (6) .675 (3) .675 (3)
Swe .548 (8) .581 (7) .645 (5) .677 (4) .645 (5) .645 (5) .645 (5) .677 (4)

2

Avg .411 (14) .469 (7) - - .481 (6) - .455 (8) -
Eng .279 (33) .421 (5) - - .367 (11) - .365 (12) -
Ger .707 (4) .696 (7) - - .697 (6) - .687 (9) -
Lat .181 (66) .251 (58) - - .254 (55) - .181 (65) -
Swe .476 (10) .509 (8) - - .604 (1) - .587 (3) -

Table 3: Results for our final submissions.

The cca-bin-r system settings achieved the first-place rank out of 189 submissions by 33 teams on
Sub-task 1, with an absolute accuracy of 0.687. The majority class was unchanged, and always choosing
it would have given a score of 0.571. The submissions with the top 15 best accuracies (four teams)
had scores ranging from 0.659 to 0.687 and assorted scores on the different languages. The four of our
systems using the -bin approach, which included the top-scoring system, have a mean percentile of 94.6;
the two -gl strategy systems had a mean percentile of 92.7, and the two systems with the -nn strategy
had a mean percentile of 75.5. On Sub-task 2, our best system achieved the fourth-place rank out of 33
teams. It had an average correlation against the gold ranking for all four languages of 0.481.

Since the threshold strategy was used only for Sub-task 1, there is no difference in results for Sub-task
2 in Table 3 in the following pairs of columns cca-nn – cca-bin, cca-nn-r – cca-bin-r, ort-bin – ort-gl
and uns-bin – uns-gl. Thus, for Sub-task 2 we provide numbers only in the cca-nn, cca-nn-r, ort-bin
and uns-bin columns.

Examining Table 3, the ranking scores for Latin are not only worse than the other languages in absolute
terms, but their position relative to other submissions is also much worse. The Latin corpora have several
anomalies, but only the small size of the earlier corpus (a third the size of the next smallest corpus) seems
likely to be a problem. For example, although both Latin corpora have a much larger proportion of short
lines than the others, a measurement of the mean context size for target words shows that for all of the
corpora, the mean context size for target words is between 8.38 (German 2) and 8.95 (German 1).

4Both available at www.ims.uni-stuttgart.de/en/research/resources/corpora/wocc
5The ranking in the table is the ranking among 186 submissions and does not correspond to ranking among 33 teams because

team ranks are based on their best submission.

www.ims.uni-stuttgart.de/en/research/resources/corpora/wocc
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A different problem is syntax. The lemmatization of the corpora is no obstacle to the English reader,
who can usually guess the correct form, because word-order in English (and also in Swedish and German)
is somewhat rigid, and word inflexions are largely replaced by separate words, which have their own
lemmas. In Latin, word-order is quite flexible, and different authors have different preferred schemes for
emphasis and euphony. Two adjacent words are not required to be part of each other’s context, and the
most semantically related words in a sentence may be separated precisely to emphasize them.

We performed post-evaluation experiments with word embedding vector size in order to discover its
effect on system performance, see Figure 1 containing visualization of results for Sub-task 2. It shows
that the optimal size for this task is in most cases between 100 and 175 for Sub-task 2, and between 75
and 125 for Sub-task 1 (not shown here). We also tried using fastText (Bojanowski et al., 2017) instead of
word2vec Skip-gram to get the semantic space, with settings that correspond to the ones we used for the
final submissions. The performance using fastText was not improved in general, but for some settings
we obtained slightly better results. Other experiments suggest that Latin results can benefit when the
context size is increased during the training of the semantic spaces. According to submitted results, it
seems that CCA method with reversed order (columns cca-nn-r, cca-bin-r in Table 3) works better than
without reversed but from the Figure 1 is evident that it is valid only for English and Latin.
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(b) Reversed nn. mapping – cca-nn-r
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Figure 1: Performance using the CCA method with different word embeddings size for Sub-task 2.

6 Conclusion

Applying a threshold to semantic distance is a sensible architecture for detecting the binary semantic
change in target words between two corpora. Our binary-threshold strategy succeeded quite well. We
did have a small advantage in that the list of target words turned out to be nearly equally divided between
changed (0.57) and unchanged (0.43) words. Thus, choosing thresholds assuming that the division was
50/50 was not a severe problem. Our experiments also reveal the limits of a threshold strategy, as shown
in Table 2. Second, although our systems did not win Sub-task 2 change-ranking competition, they
show that our architecture is a strong contender for this task when there is sufficient data to build good
vector semantic spaces. The results for Latin illustrate that there is still room for other, less statistical
approaches; one might have predicted, falsely, that 1.7M tokens was plenty of data. The variety of
experiments which were possible in the post-evaluation period suggest that the corpora developed for the
task will encourage work in the area. In future work, we expect to focus on other cross-lingual techniques
and other methods of measuring similarity between words besides cosine similarity.
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