WOLI at SemEval-2020 Task 12: Arabic Offensive Language
Identification on Different Twitter Datasets

Yasser Otiefy Ahmed Abdelmalek Islam El Hosary
WideBot WideBot WideBot
y.otiefy@widebot.ai a.sherif@widebot.ai islam@widebot.ai
Abstract

Communicating through social platforms has become one of the principal means of personal
communications and interactions. Unfortunately, healthy communication is often interfered by
offensive language that can have damaging effects on the users. A key to fight offensive language
on social media is the existence of an automatic offensive language detection system. This paper
presents the results and the main findings of SemEval-2020, Task 12 OffensEval Sub-task A
Zampieri et al. (2020), on Identifying and categorising Offensive Language in Social Media.
The task was based on the Arabic OffensEval dataset Mubarak et al. (2020). In this paper, we
describe the system submitted by WideBot AI Lab for the shared task which ranked 10™ out of 52
participants with Macro-F1 86.9% on the golden dataset under Codalab username "yasserotiefy".
We experimented with various models and the best model is a linear SVM in which we use a
combination of both character and word n-grams. We also introduced a neural network approach
that enhanced the predictive ability of our system that includes CNN, highway network, Bi-LSTM,
and attention layers.

1 Introduction

Social media platforms such as Facebook and Twitter provide an online space for individuals or groups to
express their opinions often with limited restrictions. Hence, social media users may use filthy, sexual, or
offensive language Jay and Janschewitz (2008). Offensive phrases could ridicule or insult an individual
or a group Razavi et al. (2010). Many applications involve offensive language detection, for instance,
parental control or adult content filters; identifying hate speech that incites or presage violence Waseem
and Hovy (2016); Identifying troll accounts Darwish et al. (2017); conflict detection, which is often lead
up to verbal hostility Chadefaux (2014); quantifying the intensity of polarisation Conover et al. (2011). In
addition to the huge effort required by human annotators, the risk of applying discrimination or favouritism
should be placed under consideration. Moreover, a manual annotation task by human annotators would
increase the system response times drastically, since a computer-based solution can perform this task
much faster than humans. With the rapid growth in the amount of user-generated content in the social
media services, the scalability of manual filtering highlights the need for automating the process of on-line
hate-speech detection Pitsilis et al. (2018). OffensEval, SemEval-2020 Task 12 sub-task A Zampieri et al.
(2020) aims to train a model on Arabic tweets collected from Twitter, annotated by human annotators to
identify the offensive language within the messages. In this paper, we describe the system submitted by
WideBot Al Lab for the shared task of offensive language identification in Arabic and discuss the results
of our experiments and it is organised as follows: Section 2 discusses important details about the task and
data used. It additionally demonstrates the previous work done on this task. Section 3 discusses all the
datasets used in training. Section 4 presents an overview of the key algorithms. Section 5 explains the
procedures of the experiments and evaluation metrics. Section 6 compares the results. Section 7 shows
the conclusions and future works.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/.

2237

Proceedings of the 14th International Workshop on Semantic Evaluation, pages 2237-2243
Barcelona, Spain (Online), December 12, 2020.

2 Background

The goal of this task is to distinguish between offensive and non-offensive messages. Offensive messages
often contain insults, threats, and any form of targeted profanity. The dataset provided for the task is about
10,000 annotated messages. Each message is assigned one of the following two labels:

* Not Offensive (NOT): Posts that do not contain offence or profanity.

* Offensive (OFF): We label a post as offensive if it contains any form of non-acceptable language
(profanity) or a targeted offence, which can be veiled or direct.

2.1 Related work

Previous works used a variety of classification techniques. For instance. Classical models used by
(Kwok and Wang, 2013; Malmasi and Zampieri, 2017) and deep learning models (Agrawal and Awekar,
2018; Badjatiya et al., 2017; Nobata et al., 2016). Moreover, other works employed sentiment words and
contextual features (Yin et al., 2009; Nobata et al., 2016) found that linguistic features such as tweet length,
average word length, number of punctuation, number of discourse connectives can be useful for abusive
language identification. Recently, In general, transfer learning achieved state-of-the-art performance
in many natural language processing tasks and specifically in offensive language identification such as
pre-trained word embeddings as a transfer learning by Badjatiya et al. (2017) and Bidirectional transformer
for offensive language detection by Liu et al. (2019). Much research has been done on Arabic offensive
language detection based on classical supervised algorithms. Abozinadah and Jones (2016) used SVM
and novel ways of normalisation to deal with misspelling words. Later they addressed the problem
using a statistical learning approach Abozinadah and Jones (2017). Also, Alakrot et al. (2018) proposed
a solution with the SVM model with a combination of word-level features and n-gram features on a
new dataset collected from YouTube. Deep learning approaches are widely used in offensive language
detection, for example, Albadi et al. (2018) used a simple recurrent neural network (RNN) architecture
with gated recurrent units (GRU) on pre-trained word embeddings. Moreover, Mubarak and Darwish
(2019) introduced a deep learning model. More details can be found in this survey for a complete review
Al-Hassan and Al-Dossari (2019).

3 Dataset

This subsection shows the used dataset beyond the provided training data by Arabic OffensEval shared
task Mubarak et al. (2020) which are Twitter examples with labels NOT for non-offensive examples and
OFF for offensive examples. We faced a dataset imbalance problem since the provided dataset has 1,915
examples for OFF and 8,085 examples for NOT, so we decided to use the following additional datasets in
our experiment:

* L-HSAB: Levantine Arabic messages extracted from Twitter. The dataset contains 8,846 tweets with
three labels: Hate, Abusive, and Normal. For further details and statistics, please refer to Mulki et al.
(2019).

* WideBot’s offensive language dataset: Our private dataset was generated by human annotators.
They are messages written in the form of chat messages between two individuals. annotators include
some properties and attributes in creating the dataset such as it should contain vulgar languages,
phrases that try to harshly criticise or mock someone, and obscene and offensive terms. The dataset is
balanced with 1600 offensive and 1600 non-offensive messages. A label of two labels was assigned
to each message whether it is offensive (OFF) or not (NOT).

4 Proposed Models

This subsection shows the key algorithms and modeling decisions we used in our experiments. We used a
Logistic Regression model on a bag of words of the training dataset as our baseline and other two main
systems which are Linear SVM from classical models and the other one is based on recently developed
neural network architectures.

2238

41 SVM

The system used an SVM model Cortes and Vapnik (1995) with the linear kernel to train on an n-gram
language model. For the feature representation, we used TF-IDF and combined the word n-grams with
char n-grams. The feature matrix consists of both character (from uni-gram to 6-grams) and word (from
uni-gram to 5-grams) levels.

4.2 Deep Learning Model

In this model, we use word embeddings as our text representation then we feed it into a deep model that
uses different neural layers which are CNN, highway network, Bi-LSTM, and attention layers (CHBA).
This model is inspired by (Kim et al., 2016; Srivastava et al., 2015; Liu and Lane, 2016). We incorporated
both character and word embeddings as inputs to our network using FastText' which is a pre-trained
skip-gram word embedding for the Arabic language and trainable character embedding with the random
initialisation. Every input is processed in its branch. Character embeddings are processed using CNN
layers by Kim et al. (2016) and Highway network by Srivastava et al. (2015). At the same time, the
word embeddings are processed by passing it to a dropout layer and the output of both branches are
concatenated. At this step, we are ready to pass it to our main network. This network is a bidirectional
LSTM layer with an attention layer inspired by Liu and Lane (2016). The output from these layers is
projected on a sequence of dense layers and finally the output layer which will map the output of these
layers to one of the classes which are OFF or NOT. Figure 1 shows the architecture of this model.

Tharacter
Input

Word
Embedding Embedding

ayer
Output Layer

Figure 1: Generic architecture graph of the CHBA network

S Experimental Setup

We train different models for the classification task. In this section, we explain the preprocessing and
training phases. The classifiers we experimented with include SVM with features of a word and character
n-grams and the CHBA network. We experimented using both the original dataset only and the external
datasets mentioned before. We have chosen the SVM model with the OffensEval dataset and other external
datasets since it performs the best score in our experiments until the time of submission, but we did further
experiments using the CHBA network on the OffensEval dataset only with hyperparameter optimisation
which did better than the submitted one. The evaluation metric of this task is Macro-F1 which calculates
the unweighted-mean F1 of the two classes since the imbalance of the data classes affects the macro-F1,
and usually, the score is penalised by the minority classes.

5.1 Preprocessing

Preprocessing is important in deriving useful information and improving the quality of data that directly
affects the performance of our model, especially when dealing with text messages from various dialects

'"FastText: https://fasttext.cc/

2239

and non-standard language. First, we did some preprocessing on each external dataset separately to make
it fit in our preprocessing pipeline and these steps are:

* For L-HSAB dataset, we merge the two classes (Hate and Abusive) into one (OFF), and renamed the
class “Normal” to be “NOT”.

* For WideBot dataset, In an attempt to overcome the imbalanced classes problem in the original
dataset, we decided to include only the offensive messages only.

Then we feed the dataset to a preprocessing pipeline. The pipeline contains the following:

* Removing all URLs, mentions, emails, dates, numbers, punctuation, English letters, stop words
found in NLTK, and the emojis.

* Unifying similar Arabic characters such as Hamza and Yaa.

* Replace the consecutive repeated characters with only one character.

5.2 Data Split

We used the officially released dataset in addition to our datasets mentioned before and used the standard
split (train/validation/test) with the standard dataset provided by the OffensEval task organisers. We
extended the training set to be a subset of the standard train, L-HSAP, and WideBot’s dataset. Eventually,
we had 16,046 messages for the training set, 1,000 messages for the validation set, and 2,000 for the test
set. All of our models were trained on the same data set.

5.3 SVM model

We added a special preprocessing for the SVM model, by converting the text into vectors of TF-IDF on
both character and word levels. The vectors are ranging from uni-grams to 5 n-grams for word vectorizer
and from uni-grams to 6 n-grams for character vectorizer. We tested the SVM with a linear kernel
which achieved 87.3% on the validation set. Some feature reduction was done to include the features
with the highest TF-IDF score on both character and word levels. In our experiment, we tried different
combinations of features from both word and character TF-IDF vectorizer on the validation dataset to
select the best combination. We start by removing the features with the least TF-IDF score and continue
until we reach the best combination.

5.4 CHBA Network

We tried the skip-gram version of FastText Arabic embedding and Aravec by Soliman et al. (2017) with
hidden layer size 300 as our word embedding in this experiment which is trained on about 67 million
tweets, but FastText proved its effectiveness in this task. Each word is represented with a vector its size is
300 and each sentence is limited with a max sequence length 50 of words so the output should be (50) *
300, and for character embedding, we limited the word length with maximum 10 characters and character
embedding size 20 with matrix shape (10) * 20. For activation layers we use T'anh in the character
processing branch and Relu for the others, We set a drop-out rate by 0.5 for embedding layers and 0.33
for other layers. The dataset on hand is imbalanced, which means in the first few iterations the network is
just learning the bias. To speed up the convergence, we set the bias on the logits such that the network
predicts the probability of (positive/negative) at initialisation. Finally, for optimisation purposes, we used
sparse categorical cross-entropy as our loss function and Adadelta as an optimiser as it converged very
well in most of our experiments for this system. Overparameterized deep networks like CHBA, are prone
to overfitting. With other regularisation methods, we used a technique called Flooding inspired by Ishida
et al. (2020) to prevent the training loss from reaching zero and float around small constant b, it is named
as flooding level by the original authors. It does not mean the training loss will become positive. We still
can learn till zero training error, the purpose here is to only make the loss positive assuming the flooding
level is not too big. Assume the original learning objective is J, the modified learning objective J with
flooding is
J(0) = [J(0) —b| +b

2240

where b is the flooding level, a small positive constant, and # is the model parameter. We experimented
with multiple values for the hyperparameter b. When J(0) > b , the direction of J(f) and J w.rt. 0 will be
the same, which means the learning objective is above the flooding level, in other words, there is a gravity
effect with gradient descent. But when J(6) < b, flooding state, J w.rt. 6 will point to the opposite
direction of J(#), which means there is a buoyancy effect with gradient ascent.

6 Results

Table 1 shows the Macro F1 score of all of our models experimented on task 12 OffensEval over the
Arabic dataset. After the submission, we made further development in CHBA. It outperformed the SVM
with a score of 88.72%, for more statistics about the scoreboard, you can find them in table 2.

Classifiers Dataset Validation Test Notes
Original data only 75% 76.59%
Adding external data | 81.19% 83.66%
Original data only 84.83% 85.61%
Adding external data | 87.32% 86.91% | The submitted model
Original data only 88.54% 88.13%
Adding external data | 88.77 % 88.72%

Baseline

SVM

CHBA

Table 1: Macro F1 score of different models

The confusion matrix in table 3 shows in detail the error pattern of our classifier, which is better in
detecting the not offensive text messages than detecting the offensive ones, we think this is because of the
challenging of the subtle meanings and the context which are too hard to be caught by the model.

Mean Max Min Standard Deviation
79.24% | 90.17% | 44.51% 12.19%

Table 2: Statistics about Macro F1-Score in OffensEval scoreboard

Actual NOT | Actual OFF
Predicted NOT 1,540 103
Predicted OFF 58 299

Table 3: Confusion matrix of the winning model (Linear SVM)

Note: All the evaluation was done on the golden test set and validation set provided by OffensEval
Team.

7 Conclusion

In this paper, we presented the results and the main findings of SemEval-2020 Task 12 OffensEval -
Arabic Task on Identifying and categorising Offensive Language in Social Media in which we carried
out different experiments with Linear SVM using different features and CHBA network. We also used a
feature selection approach to deal with the high sparsity of the data, also we have shown how stacking the
TF-IDF on word n-grams and character n-grams of the task dataset with external datasets could improve
the performance of the model. However, hyperparameter optimisation and the usage of pre-trained
word embeddings for the CHBA network showed its effectiveness in this task as it outperformed the
linear SVM model knowing that we just used the dataset provided by OffensEval only. Future work
includes investigating text representations, improving the deep learning model, and releasing WideBot
conversational dataset from different dialects for offensive language identification tasks.

2241

References

Ehab A. Abozinadah and James H. Jones. 2016. Improved micro-blog classification for detecting abusive arabic
twitter accounts. International Journal of Data Mining & Knowledge Management Process, 6:17-28.

Ehab A. Abozinadah and James H. Jones. 2017. A statistical learning approach to detect abusive twitter accounts.
In ICCDA ’17.

Sweta Agrawal and Amit Awekar. 2018. Deep learning for detecting cyberbullying across multiple social media
platforms. In ECIR.

Areej Al-Hassan and Hmood Al-Dossari. 2019. Detection of hate speech in social networks: A survey on multi-
lingual corpus.

Azalden Alakrot, Liam Murray, and Nikola S. Nikolov. 2018. Towards accurate detection of offensive language
in online communication in arabic. In ACLING.

Nuha Albadi, Maram Kurdi, and Shivakant Mishra. 2018. Are they our brothers? analysis and detection of
religious hate speech in the arabic twittersphere. 2018 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages 69-76.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017. Deep learning for hate speech
detection in tweets. In WWW.

Thomas Chadefaux. 2014. Early warning signals for war in the news.

Michael D. Conover, Jacob Ratkiewicz, Matthew R. Francisco, Bruno Gongalves, Filippo Menczer, and Alessandro
Flammini. 2011. Political polarization on twitter. In /ICWSM.

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine Learning, 20:273-297.

Kareem Darwish, Dimitar Alexandrov, Preslav Nakov, and Yelena Mejova. 2017. Seminar users in the arabic
twitter sphere. ArXiv, abs/1707.07276.

Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. 2020. Do we need zero training
loss after achieving zero training error? ArXiv, abs/2002.08709.

Timothy Jay and Kristin Janschewitz. 2008. The pragmatics of swearing.

Yoon Kim, Yacine Jernite, David A Sontag, and Alexander M. Rush. 2016. Character-aware neural language
models. In AAAI

Irene Kwok and Yuzhou Wang. 2013. Locate the hate: Detecting tweets against blacks. In AAAL

Bing Liu and Ian Lane. 2016. Attention-based recurrent neural network models for joint intent detection and slot
filling. In INTERSPEECH.

Ping Liu, Wen Li, and Liang Zou. 2019. Nuli at semeval-2019 task 6: Transfer learning for offensive language
detection using bidirectional transformers. In SemEval @ NAACL-HLT.

Shervin Malmasi and Marcos Zampieri. 2017. Detecting hate speech in social media. ArXiv, abs/1712.06427.
Hamdy Mubarak and Kareem Darwish. 2019. Arabic offensive language classification on twitter. In Soclnfo.

Hamdy Mubarak, Ammar Rashed, Kareem Darwish, Younes Samih, and Ahmed Abdelali. 2020. Arabic offensive
language on twitter: Analysis and experiments. arXiv preprint arXiv:2004.02192.

Hala Mulki, Hatem Haddad, Chedi Bechikh Ali, and Halima Alshabani. 2019. L-hsab: A levantine twitter dataset
for hate speech and abusive language.

Chikashi Nobata, Joel R. Tetreault, Achint Oommen Thomas, Yashar Mehdad, and Yi Chang. 2016. Abusive
language detection in online user content. In WWW.

Georgios K. Pitsilis, Heri Ramampiaro, and Helge Langseth. 2018. Detecting offensive language in tweets using
deep learning. ArXiv, abs/1801.04433.

Amir Hossein Razavi, Diana Inkpen, Sasha Uritsky, and Stan Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference on Al.

2242

Abu Bakr Soliman, Kareem FEissa, and Samhaa R. El-Beltagy. 2017. Aravec: A set of arabic word embedding
models for use in arabic nlp. In ACLING.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. 2015. Highway networks. ArXiv,
abs/1505.00387.

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols or hateful people? predictive features for hate speech
detection on twitter. In SRW@HLT-NAACL.

Dawei Yin, Zhenzhen Xue, Liangjie Hong, Brian D. Davison, and Lynne Edwards. 2009. Detection of harassment
on web 2.0.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Hamdy Mubarak, Leon
Derczynski, Zeses Pitenis, and Cagr1 Coltekin. 2020. SemEval-2020 Task 12: Multilingual Offensive Language
Identification in Social Media (OffensEval 2020). In Proceedings of SemEval.

2243

