UNT Linguistics at SemEval-2020 Task 12: Linear SVC with Pre-trained
Word Embeddings as Document Vectors and Targeted Linguistic Features

Jared Fromknecht and Alexis Palmer
Department of Linguistics, University of North Texas
jaredfromknecht@my.unt.edu
alexis.palmer@unt.edu

Abstract

This paper outlines our approach to Tasks A & B for the English Language track of SemEval-
2020 Task 12: OffensEval 2: Multilingual Offensive Language Identification in Social Media.
We use a Linear SVM with document vectors computed from pre-trained word embeddings,
and we explore the effectiveness of lexical, part of speech, dependency, and named entity (NE)
features. We manually annotate a subset of the training data, which we use for error analysis and
to tune a threshold for mapping training confidence values to labels. While document vectors are
consistently the most informative features for both tasks, testing on the development set suggests
that dependency features are an effective addition for Task A, and NE features for Task B.

1 Introduction and System Overview

SemEval 2020 Task 12: Offenseval 2 (Zampieri et al., 2020) is an offensive language identification task
revolving around classifying social media comments. For the English track, there are three sub-tasks:
Offensive Language Identification (Task A), Offense Type Categorization (Task B), and Offense Target
Identification (Task C). We focus on Tasks A & B. In contrast to 2019’s task, this year’s training data is
labeled using distant supervision: various supervised models trained on the manually-annotated OLID-
2019 data set (Zampieri et al., 2019al) output labels and confidence values for a much larger data set,
resulting in the SOLID dataset (Rosenthal et al., 2020)). The semi-supervised labels are converted to an
average confidence value between 0 and 1; 1 is aligned to the positive class for the task and O to the
negative class. Thus an additional challenge in this task is determining an appropriate threshold value for
mapping confidence measures to labels. To this end, we create a held-out hand-annotated development set
from the training data for each task and use it as a test set for picking a good threshold[]

Using Scikit-learn’s Linear SVM implementation (Pedregosa et al., 2011)), we build a classifier with
features based on two sets of pre-trained word embeddings: GloVe’s 200-dimension Twitter embeddings
(Pennington et al., 2014)) and 200-dimensional word2vec Twitter embeddings (Deriu et al., 2017). Addi-
tionally, we explore four categories of linguistic features beyond the embeddings: lexical, part of speech,
dependency, and named entity features. We use spaCy (Honnibal and Johnson, 2015)) for preprocessing
and extraction of linguistic features.

Ablation studies of the additional linguistic features establish which linguistic features are most effective
in each task. The goals of these studies are: To further target which features are most informative for each
of the sub-tasks; to also narrow in on features that are ineffective or may be detrimental to classification;
and to identify which types of offensive constructions are still missed by the model and why. In other
tasks, such as multi-lingual sentiment analysis, success has been found in Deep Learning architectures
that have utilized both word embeddings and feature embeddings as input (Akhtar et al., 2019). For
some tasks, the most appropriate types of feature embeddings may be directly apparent. However, in a
complex semantic problem such as recognizing offensive and abusive language, the ideal feature support
to the word embedding input is not immediately clear. Feature engineering and error analysis can offer

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
'Code and hand-annotated data sets available via GitHub: https://github.com/jmfromkn/Of fenseval_Code

2209

Proceedings of the 14th International Workshop on Semantic Evaluation, pages 2209-2215
Barcelona, Spain (Online), December 12, 2020.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/jmfromkn/Offenseval_Code

additional information in understanding which linguistic relations best inform feature extraction for future
implementations.

2 Data

All experiments are performed using the SOLID (Rosenthal et al., 2020) and OLID (Zampieri et al..
2019a)) data sets. The OffensEval annotation scheme is a pipeline: tweets are labeled as OFF or NOT in
Task A, and only offensive tweets go on to Task B, where they are labeled as targeted or untargeted. This
means good performance on earlier subtasks is essential for good overall performance; thus we focus on
the first two subtasks. We randomly sample 1 million tweets from the total training data for Task A (over
9 million tweets), and we use the entire training set for Task B (188,727 tweets). As mentioned above, we
create small hand-annotated validation sets for each task: 375 tweets for Task A and 350 for Task B.

Discretization and Threshold Testing. To identify an appropriate threshold for discretizing the average
confidence values in the training set (i.e. to convert them to labels of OFF or NOT), we perform iterative
testing of different threshold values, using an increment of 0.01 and measuring F1 on the hand-annotated
validation sets. One concern with this approach is that all annotations in the hand-annotated data sets
come from our first author, with no discussion or adjudication. Thus we perform a second round of
iterative testing using last year’s OLID test data as validation data. We decide final threshold values by
compromising between the best thresholds on our human-annotated data and on the OLID-2019 test data.
We try two different strategies for picking the best threshold, described below. Results appear in Figure
lines with circles show the simple average strategy, and those with triangles show the filtering strategy.
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Figure 1: F1 Scores for different threshold values for both subtasks, comparing two different validation
data sets and two different selection strategies.

Average Confidence Value Testing. In this strategy, we compare performance on the validation data
sets for different thresholds on the average confidence value provided with the training data. The best
values testing on our small manually-annotated data set are 0.40 and 0.33 for Tasks A and B, respectively.
Testing on OLID-2019, the best threshold values for the two tasks are 0.44 and 0.47, respectively.
Compromise values, used for further classification, are 0.42 and 0.38.

Filtering. The second strategy is designed to remove many of the less-confident or borderline cases of
the data, leaving only clearer instances of positive and negative classes. To do this, we set two conditions:
average confidence values must be either above a certain value or below another value (avoiding instances
with scores around the midpoint of the data), and standard deviation for the scores must not exceed a
specified value. As such, the following filters were set for Task A&B’s training data:
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Task A Filter: ((Average < 0.32 | Average > 0.68) & Standard Deviation < 0.18)
Task B Filter: ((Average < 0.25 | Average > 0.4) & Standard Deviation < 0.27)

The filtering strategy has a noticeable effect on performance trends, effectively flattening the peaks and
troughs seen with the simpler method. While filtering allows for a more generous range when determining
the best threshold, with a larger margin for error, there is a fundamental concern of whether or not this
method generalizes well to new test data, having removed all of the difficult and/or vague cases. We use
the simple method for our submitted system.

3 Model and Features

Although the most successful systems from Offenseval 2019 were primarily neural systems (Zampieri
et al., 2019b)), we choose to use a non-neural SVM classifier because of the ease of feature inspection,
feature specification, and error analysis. Specifically, we use scikit-learn’s linear SVM implementation
(Pedregosa et al., 2011) with default parameter values.

Previous SVM-based approaches to offensive language detection investigate the effectiveness of
sentence embeddings (Indurthi et al., 2019, for example) and lexical features such as sentiment analysis
and offensive/profane word lexicons (Plaza-del Arco et al., 2019, among others). We hypothesize that part
of speech, dependency, and named entity features capture additional context useful for classifying tweets
with more elusive forms of offensive language. These context-level features could also be useful in Task
B, to capture differences in the constructions seen in targeted vs. untargeted tweets. Our base model uses
the dimensions of a document embedding (described below) as features; our additional linguistic features
are listed in Table[l|and described below.

Feat. Group List

Lexical Avg. # Punct, Avg. Token Length, # Tokens, # Non-alpha Subs, @User Front (Binary), @User Back
(Binary)

Part of Speech TFIDF of POS Counts

Dependency TFIDF of DependencyTag_RootPOS

NE NE TFIDF, Has Person, Has Organization, Has Nationality, Has Place

Table 1: Linguistic Feature List

Document embeddings. Following Mitchell and Lapata (2010), we build document embeddings (treat-
ing each tweet as a document) by averaging the vectors of the individual words in the tweet. For coverage,
we concatenate document vectors based on GloVe’s 200-dimension Twitter embeddings (Pennington et al..
2014) with document vectors based on twitter-trained English word2vec embeddings (Deriu et al., 2017).

Lexical features. This category of features includes a combination of simple token features, including
counts and length, with several twitter specific features. In particular, features related to user names
and non-alphabetic character substitutions aim to account for alternate word constructions that may be
reflected in the pre-trained embeddings. [Davidson et al. (2017) use a similar non-alpha substitution feature
when looking at Yahoo! Finance comments due to observations that some users self-censor their profanity.

Part of speech and Dependency features. Along with tokenization, part of speech tagging and de-
pendency parsing was also done by spaCy’s NLP pipeline for each tweet. For part of speech features,
we build a TFIDF matrix of tags. For dependency features, which describe relation to a root, we con-
catenate dependency tags with their corresponding root’s POS tag to form “Dependency_HeadPOSTag”
constructions and, similarly, build a TFIDF matrix. In both cases, we use sub-linear term frequency.

Named entity features. We use spaCy’s Named Entity Recognition (NER) parser to produce named
entity tags for tweets. The intuition is that NE information should be useful for Task B in particular, as the
presence or lack of certain NE constructions could signal a targeted or untargeted tweet. We implement
this as four binary features indicating the presence of Person, Place, Nationality, and Organization tags.

2211



Feature Set -add  Task AF1 Task B F1 || Feature Set - subtract Task AF1 TaskBF1
Embeddings Only 0.796 0.821 All Features 0.819 0.835
Embeddings + NER 0.798 0.832 All minus NER 0.816 0.824
Embeddings + POS 0.812 0.8206 All minus POS 0.816 0.827
Embeddings + LEX 0.803 0.812 All minus LEX 0.819 0.835
Embeddings + DEP 0.819 0.809 All minus DEP 0.809 0.823

Table 2: Ablation studies on development sets. Additive (left): embedding features as base model.
Subtractive (right): full feature set as base model. Thresholds: Task A = 0.40 and Task B = 0.33

Additionally, to test whether additional NE types could be indicators for Task B, we construct a TFIDF
matrix of named entity tags in a given tweet.

4 Analysis

We perform two types of analysis to better understand the role of various linguistic feature sets for
offensive language classification: ablation studies (Table [2)) and qualitative error analysis (Tables 3] and F).
We do ablation studies in two directions: adding feature sets to our base model, and subtracting them from
the full model (base model plus all linguistic feature sets). All results in this section are from testing on
our hand-annotated validation set, with best-performing threshold values. For each task, one additional
feature set triggers the largest gain in F1, and additional feature set combinations result in negligible gains;
we do additional error analysis for these two feature sets. The lexical feature set seems to be the least
informative for both tasks, as its addition or subtraction causes minimal changes.

Text Gold Base +Dep

1. “I forgot that for my city school is back in session, and I nearly shat OFF NOT OFF
myself when I saw a school bus”

2. Ain’t nothing wrong with that £ Some of you should just accept you OFF NOT OFF
was a quick f**k. &amp; that’s okay &

3. @USER That must have been extremely painful! NOT OFF NOT

4. @USER We need some or her passion in politics. She would wipe the NOT OFF NOT
floor with Johnson.

5. Hey I don’t like the term bbc or to use it. I just like that I have sex OFF NOT OFF
with people. No label necessary.

>

6. “T've got this love-hate relationship with fluid dynamics = it’s so OFF NOT OFF

2% 2399
]

interesting, but so f**king hard %

Table 3: Examples where the addition of dependency features corrects Baseline model errors in Task A.

Task A. Dependency features are the most effective of the linguistic feature sets for Task A, triggering
the largest performance gain in additive ablation and the largest drop in subtractive ablation. Part of speech
features are the second most informative. Intuitively, context-based features like dependencies and POS
tags may capture relations with unknown words or lexical variants missed by the embeddings. For Task A,
POS and dependency features seem to overlap, though the results suggest that dependency relations to the
POS tag of the head have more informative weight than plain POS tags. The difference between the effect
of the two feature sets is minimal in additive ablation but stronger in subtractive ablation. Table 3| shows a
sampling of misclassifications made by the embeddings-only (Base) model that are corrected through
addition of dependency features. Several of these examples include variations of profanity that may not
have listings in the pre-trained embeddings such as “shat” as a replacement for “sh*t” in example 1.
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Example 4 illustrates offensive or profanity-based acronyms such as “bbc”. In these cases, context-based
relations bridge the gap that unknown words or variation create in the embedding baseline. In cases such
as examples 2 and 6, while the offensive keywords have a strong association with the OFF label, the
presence of emojis may interfere with the mean vector of the embeddings, as these are unlikely to have a
concrete entry in the pre-trained embeddings.

Dependency features also have some overlap with other feature categories. One of the twitter-specific
lexical features signals the @USER tag in tweet-initial position. @USER at the start of a sentence is
parsed as a root dependency tag with no relations. Because of this, the presence of a “Root_ POStag”
relationship in a sentence commonly marks for start @ USER position. Relationships such as these, where
the dependency features indirectly measure and have overlap with other feature areas in their context and
scope, may explain the size of the effect for dependency features.

Text Gold Base +NE

7. @USER NORMIE! YOU'RE A F**KING NORMIE! GO KILL TIN UNT TIN
YOURSELF TO GO TO HEAVEN WITH ALL YOUR FAVORITE PEO-
PLE THAT DIED!

8. ppl who say animes as the plural form of anime are f**king terrorists =~ TIN UNT TIN

9. leaven big a** branches in my garden UNT TIN UNT
10. @USER Meanwhile Indians are like - what the f**k is Bosnia? UNT#* UNT TIN
11. Am I the only one that thinks Tiktok cosplayers are weird as f**k TIN UNT TIN

Table 4: Examples where addition of named entity features differs from Baseline in Task B.

Task B. As expected, named entity features offer the most information value on top of the base model
for Task B. While specific NE tags could be perceived as being most useful for Task C in distinguishing
between Individual, Group, or Other categories, the presence of these aspects can help distinguish between
a targeted tweet and an untargeted tweet. We find that the four binary features are more useful than the
TFIDF matrix for frequencies of NE tags. The binary features offer sufficient coverage to explain most
misclassification errors corrected through the addition of NE features. Some examples appear in Table

A challenging aspect of building the development set for this task is the absence of conversational
context. Example 10 could be considered ambiguous as to whether the tweet is targeted, depending on
the speaker. If the speaker is Indian (i.e. a member of the potentially targeted group), whether the tweet
is targeting that group remains unclear. However, if the tweet is uttered by a person outside that group,
it would be more clearly considered a targeted tweet. In the case of this tweet, it gets labeled with Has
Place and Has Nationality, suggesting a targeted (TIN) label, but the correct label could change based on
conversational context.

Additional features offer very little value, with only the Full Feature model and the Minus Lexical
Feature model surpassing the Embeddings-plus-NE model. Though dependency features show greater
effectiveness for Task A, they under-perform in Task B, offering less F1-gain when added to the baseline.

5 Results and Future Work

At submission time, our model achieved F1 scores of 0.882 for Task A (Rank 71) and 0.617 for Task B
(Rank 16). The model with these scores used thresholds of 0.38 and 0.33 for Tasks A and B. Additional
threshold testing on the development set after the initial submission period suggests that further fine-tuning
of the threshold may increase F1. Use of the filtering strategy and additional filter parameter testing could
also improve performance; we leave investigation of these directions for future work.

To further explore this task, we would like to consider other embedding approaches, considering
contextual embeddings such as ELMo (Peters et al., 2018) or large-scale fastText (Bojanowski et al..
2016)) embeddings for improving coverage on unknown words and lexical variations common to Twitter.
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Another interesting direction is the use of methods to transform emojis into word representation (Singh et
al., 2019); we suspect that emojis may play a strong role in conveying offensive language. Since linguistic
features seem to be useful for this task, we plan to look into twitter-specific toolkits for extraction of
linguistic features; two possibilities are NLTK’s tweet tokenizer (Bird et al., 2009) and TweetNLP’s
part-of-speech taggers and dependency parsers (Owoputi et al., 2013). Finally, larger development sets
with more annotators should lead to better threshold testing, especially for Task B.

6 Conclusions

While document-level embeddings are a useful foundation for both Tasks A and B, the usefulness of
additional features is highly dependent on the task. Performance on task A, which saw errors where
embedding coverage was bypassed by lexical variations, misspellings, or acronyms, is bolstered by context-
based features in the form of dependency information. This dependency information also indirectly
covered other lexical features and proved to be the most informative of the additional features. Task B is,
as hypothesized, most heavily affected by the addition of named entity features.
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