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Abstract

Hate speech detection on social media platforms is crucial as it helps to avoid severe harm to
marginalized people and groups. The application of Natural Language Processing (NLP) and Deep
Learning has garnered encouraging results in the task of hate speech detection. The expression
of hate, however, is varied and ever-evolving. Thus better detection systems need to adapt to
this variance. Because of this, researchers keep on collecting data and regularly come up with
hate speech detection competitions. In this paper, we discuss our entry to one such competition,
namely the English version of sub-task A for the OffensEval competition. Our contribution can be
perceived through our results, that was first an F1-score of 0.9087, and with further refinements
described here climb up to 0.9166. It serves to give more support to our hypothesis that one of
the variants of BERT, namely RoBERTa can successfully differentiate between offensive and
non-offensive tweets, given the proper preprocessing steps.

1 Introduction

The present paper is a detailed description of the system1 we use in the competition of detecting hate
speech (Zampieri et al., 2020). The system proposed here was designed for the English language portion
of sub-task A. We have decided to investigate a Deep Learning model, due to the considerable amount of
data we had available at our disposal.

The macro F1-score of 0.9087 attained by our model in the competition puts us close to the top half of
the competitors. While this can be discouraging, it should be noted that only one million samples were
used to train our models due to the limitations of the available hardware capacity. Furthermore, even with
the above-mentioned limitation, the difference between the classification score we attained, and the top
team’s classification score was only 0.02. This suggests that with some improvements (e.g. optimization
of hyper-parameters and samples used), our system can be capable of State-of-the-art performance.

1.1 Related work

Delving into hate speech detection, we were able to gather previous research done on the topic, some by
using Convolutional Neural Networks (CNNs) like (Zhang et al., 2018), (Gambäck and Sikdar, 2017)
and (Pedro Alonso, 2019). As quite many research papers have dealt with hate speech with CNN, we
decided to experiment with a different deep learning model that has shown excellent results in NLP tasks,
namely BERT. To start, we found (Mozafari et al., 2019), which dealt with a task similar to ours, with
good results. Therefore, we decided to try some of BERT’s variants, namely DistilBERT (Sanh et al.,
2019a) and RoBERTa (Liu et al., 2019a). After reading throughout the literature, we consider that the
use of RoBERTa and DistilBERT, has not been researched enough, and we consider that our experiments
serve to give some more visibility to the RoBERTa (Liu et al., 2019b) model.

1available at https://github.com/pedro-alonsod/OffenseEval
This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/.
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2 Experimental data

Regarding the data used, for training, we used the training data published for the competition (Offense-
val2020 (Zampieri et al., 2020) - described in Section 2.1), while for development and validation purposes,
we used the OLID dataset (Zampieri et al., 2019) (described in Section 2.2). As we aimed to detect hate
speech for English, we used the English language data from both datasets.

2.1 OffenseEval2020

The competition data available to us was OffensEval2020 (Zampieri et al., 2020), where task A (our focus)
contained 9, 089, 140 tweets. The task was annotated by two scores, namely mean and standard deviation.
True labels were not provided for the training set of sub-task A, so part of the challenge was to select a
threshold for the predictions attained and label them ourselves for the submission. The threshold found
was then validated against the test set of 3887 tweets for which organisers provided the correct labels.

2.2 OLID

The OLID (Zampieri et al., 2019) data was also used for validation purposes, and setting the optimal
threshold. The ways OLID (Zampieri et al., 2019), correspond to, if a post ”...do not contain offense or
profane”(Zampieri et al., 2019) language, that post is labeled as not-offensive if it violates any of rules in
OLID such as, ”Posts containing any form of non-acceptable language (profanity) or a targeted offense,
which can be veiled or direct. These posts include insults, threats, and posts containing profane language
or swear words”(Zampieri et al., 2019), which are flagged as offensive. The OLID data comprises 13241
items or tweets, of which 4400 (roughly 35% percent) fall in the offensive category. The rest are cataloged
as non-offensive.

3 System overview

In this section, we give an overview of the full processing chain created to produce the results that had
been submitted for the competition. First, we describe the text preprocessing steps we took to clean up the
tweets and make them more usable to the whole system. Then, the focus will be on the selection of the
model from the two models that were decided to test (DistilBERT (Sanh et al., 2019a) and RoBERTa (Liu
et al., 2019a)), as well as, the reasons that lead us to select the final model (in this case RoBERTa (Liu et
al., 2019a)). We will also discuss the hyper-parameters that gave us our (previously indicated) best score.
Lastly, we discuss the algorithm we used once the output of our model was collected to transform it from
a regression task to a classification one.

3.1 Text preprocessing

Text preprocessing was done on the tweets provided and trained the deep learning model with them. The
tweets were tokenized, i.e., divided into words. Our preprocessing replaced or removed some of the tokens.
With regular expression search, the @ − words (e.g. @StephenKing) were replaced with @USER,
and URLs (if any) were replaced with ”URL.” We noticed that the emoji count (number of emojis in a
tweet) and the tweet scores were not correlated significantly. The facial emotion emojis also had almost

Table 1: Original tweets and their preprocessed counterpart

Original Preproccessed
Somebody was abit excited by
the first of his birthday celebrations

Somebody was abit excited by
the first of his birthday celebrations

@USER Lowkey my jam but I’m on his
head for this XXL shirt he wearing

@USER Lowkey my jam but I’m on his
head for this XXL shirt he wearing

@USER His ass need to stay up @USER His ass need to stay up
@USER his bouffant tail is amazing @USER his bouffant tail is amazing
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no correlation. Therefore, emojis were removed from the tweets. Hashtags (#) and emoticons were also
removed from the tweets. In the end, the processed tweets were generated with only one whitespace
between the words/tokens in each tweet (see Table 1 for examples of text preprocessing).

3.2 Models: RoBERTa & DistilBERT

The system we use to get our results is one of the many variants of BERT (Devlin et al., 2019), which
is an instance of the transformers architectures of Deep Learning. The transformers are detailed in the
original paper (Vaswani et al., 2017), and are a type of network that can deal with sequence-to-sequences
transformation without the need for a recurrent neural network intervention. The main point raised
in the transformers’ paper (Vaswani et al., 2017) is that an attention-mechanism is the only thing that
networks need to perform successful tasks while doing away with the idea that a recurrent neural network
is also needed. One of the leading implementations of the transformers architecture and one of the most
successful in NLP tasks is BERT (Devlin et al., 2019).

The success which BERT had on NLP tasks gave rise to several clones with slight modifications, namely
DistilBERT (Sanh et al., 2019a), Roberta (Liu et al., 2019a), ElMo (Peters et al., 2018), to name a few.
While these variants do offer some modifications, which for some tasks matter, they all share the common
base, which is BERT and transformers at the end. For our experiments, we tried two transformer models,
namely DistilBERT (Sanh et al., 2019a) and RoBERTa (Liu et al., 2019a). The results shown in table 2
represent our first experiments, which helped us to choose RoBERTa (Liu et al., 2019b) as our selected
model. They were compiled using DistilBERT(Sanh et al., 2019b) for three and twenty epochs and (Liu
et al., 2019b) for three, using early stopping in both cases. The threshold was selected as the one that got
the best accuracy over the OLID (Zampieri et al., 2019) data sets.

Table 2: Model decisions analysis

Model
Training

Threshold
Results (macro-F1 score)

Epochs OLID train OLID test

Distillbert 3 0.46 0.7917 0.6002
Distillbert 20 0.41 0.7720 0.5958
Roberta 3 0.42 0.8043 0.6085

4 Experimental setup

For training the model, the data was OffenseEval2020 data (Zampieri et al., 2020) raw was put to the
preprocessing stage described previously. After we had the clean data, we took the first 1 million samples
from the training data, and partitioned this one million tweets into a dev set of 3000 tweets (constructed
from the last 3000 tweets), and the rest was used for training. The resulting training set was fed as input
to the RoBERTa (Liu et al., 2019a) model. The hyper-parameters were mostly left as default, though we
modified the following: ”early stopping patience” this was set to three and ”learning rate” was set to
1e− 5 and ”evaluate during training steps”, the number of training steps before evaluating, was set to
2000. With these hyper-parameters, we trained two versions of DistilBert (one for 3 epochs, and another
one for 20 epochs), as well as RoBERTa, for 3 epochs. Here, we used only the mean (and not the standard
deviation) score as target for regression.

As the final step of the process, predicted scores had to be transformed into class labels. To do so, we
set a threshold for each model on the OLID train data. This threshold was selected for each model based
on the best result attainable on the training set of the OLID database. This threshold and the corresponding
result for each model are listed in Table 2. Then for final submission, we selected the model that attained
the best classification score on OLID test using the same threshold. As shown in 2, the RoBERTamodel
attained the best classification score on the OLID train set, but its performance proved to be the best on
the test set of OLID as well.
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5 Results

When evaluated by the organizers, our submission attained a classification score of 0.9087 on the test set
of OffensEval. To examine the results further, we have trained two more RoBERTa models, in this case,
using 3000 instances for development, one for 1 epoch, and the other for 0.18 epoch (here, early stopping
ended the training process when only 18% of training instances had been used). If we apply the same
method on these models as before, the thresholds we arrive at are 0.45 and 0.44 Respectively. Using this
threshold results in the scores shown in Table 4. As shown in Table 4, with an increased development set,
we were able to attain the same results by either only training 1 epochs, or even using less training data.
Furthermore, results show that by using a more sophisticated method for finding the optimal threshold,
the resulting scores with the same models could be 0.9164 and 0.9166 respectively.

Table 3: Model hyper-parameters.

Model Name Epochs Learning Rate Threshold

RoBERTa 0.18 1e-5 0.45
RoBERTa 1 1e-5 0.44

Table 4: Model latest results

Model Threshold
Results (macro-F1 score)

OLID train OLID test OffensEval test

RoBERTa 0.45 0.7960 0.8012 0.9116
RoBERTa 0.44 0.8124 0.8026 0.9085

6 Quantitative analysis

Here we describe what hyper-parameter changes (we only varied two) or modeling (also includes the two)
decisions we think affected our results. As presented in Table 2, the current results obtained by a change
in hyper-parameters are better from the ones reported. To get these results, we used a more conservative
train/dev split, in this case, 1.04 million training samples, 3000 dev, and a combination of 0.18 and 1
epochs in training.

6.1 Error analysis

Here are some of the misclassified tweets (as OFF) and our intuition as to why these errors were made.

A33 - I see the news but I refuse to believe it and will continue my day wilfully ignorant. Glancing at
this tweet, our impression is that ”wilfully ignorant” (or just ”ignorant”) may be offensive in most context,
but in this case (since the person is saying it about himself/herself), it is not. However, the model may not
be sensitive to such nuances.

A43 - It really sucks I want to stream so bad but after an hour of talking my throat says that’s it for
today. Here we believe the model takes the word sucks as being offensive in this context: this is the type
of error that is worth being pushed down to content moderators.

A253 - @USER He deserve the worst of this all. This last example, which was also misclassified, we
think our system is being harsh in its evaluation. As the tweet does carry anger towards a person and may
sometimes be censored, but in our view, it is not offensive.
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We show confusion matrices obtained (Table 5), where it shows that our system is punishing the NOT
tweet harder where there may be no need to do so. One can also see from Table 5 that when setting the
threshold to the value used in our earlier model, we can attain a high f-score without any false negatives
while having a relatively small amount of false positives.

Table 5: Confusion matrices with two different thresholds on the Offenseva2020 Test set

Predicted
th=0.420 NOT OFF

A
ct

ua
l NOT 2500 307

OFF 0 1080

Predicted
th=0.572 NOT OFF

A
ct

ua
l NOT 2554 253

OFF 23 1057

7 Conclusion

To conclude this paper, our system shows a good performance while not being overly complicated; we
show that it is possible to tackle the task of hate speech detection using one of the variants of BERT
(Devlin et al., 2018), in this case, RoBERTa (Liu et al., 2019a). We are obtaining an F1-Score of 0.9087
(final result), which can be further pushed down to content moderators. For future work, we will continue
focusing on the model proposed here with slight modifications to hyper-parameters and text preprocessing.
We think that getting a 0.92 is quite possible with further optimization of hyper-parameters, and by
increasing the size of the development set. We also plan to experience with ensembles of models trained
on different portions of the train set.
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