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Abstract

The paper presents a system developed for the SemEval-2020 competition Task 12 (OffensEval-2):
Multilingual Offensive Language Identification in Social Media. We achieve the second place
(2nd) in sub-task B: Automatic categorization of offense types and are ranked 55th with a macro
F1-score of 90.59 in sub-task A: Offensive language identification. Our solution is using a stack of
BERT and LSTM layers, training with the Noisy Student method. Since the tweets data contains
a large number of noisy words and slang, we update the vocabulary of the BERT large model
pre-trained by the Google AI Language team. We fine-tune the model with tweet sentences
provided in the challenge.

1 Introduction

Inappropriate and offensive online content has become a significant issue due to an exponential increase
in the use of the Internet by people from different cultures and educational backgrounds. Twitter is one of
the most popular social media platform, where people share their own opinions among various topics.
Therefore, ‘tweets’ requires considerable resources to study offensive behaviors.

The SemEval-2020 competition Task 12 is a multilingual challenge of 5 languages: Arabic, Danish,
English, Greek, and Turkish (Zampieri et al., 2020). We participate in the English language track, sub-task
A and sub-task B. In this language track, the organizers provide a data set of more than 9 million sentences
of tweets along with their confidence measures produced by unsupervised learning methods (Rosenthal et
al., 2020).

To handle this semi-supervised learning task, we use the Noisy Student training method (Xie et
al., 2019) to train the BERT-LSTM model. Our approach is more successful in sub-task B, where
the standard deviation range of the provided label’s confidence is much larger, with 4.5 points better
than the next system. We have publically released the code and our Tweet’s pre-trained model at
https://github.com/phamtrancsek12/offensive-identification.

The paper is organized as follows: Section 2 introduces the related works. Section 3 describes the data
set and the preprocessing methods that we used. Section 4 describes our system architecture and training
strategy. Experimental results are presented in Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

One of the most popular and successful methods in last year’s OffensEval challenge (Zampieri et al.,
2019b) is transfer learning. Recently, transfer learning in NLP using transformer-like architecture has
significantly improved on the state-of-the-art in natural language understanding. Despite their success
on the variety of NLP benchmarks, such pre-trained models might fail to generalize to natural language
tasks from a different distribution. BERT model pre-trained on specific domain data set presented a better
performance compares to the model trained on Wikipedia corpus, such as SciBERT (Beltagy et al., 2019)
and BioBERT (Lee et al., 2019).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Class Train Dev
A NOT 50,000 1,500,000 620

OFF 50,000 unlabeled 240
B TIN 10,000 82,000 213

UNT 10,000 unlabeled 27

Table 1: Data Distribution: Train data is a subset of training set provided by the task organizers, only the
most confident examples are assigned hard-label (NOT/OFF, TIN/UNT), others are treated as unlabeled
data. We only use about 1/6 of the provided data from sub-task A and 1/2 from sub-task B to develop our
system. Development set is the test set from last year competition.

In BERT paper (Devlin et al., 2019), the authors suggested using the output of the [CLS] token for
classification. However, some researches showed that adding other layers like CNN (Rozental and Biton,
2019) or RNN (Mozafari et al., 2019) on top of BERT embedding also improves the classification result.

For a supervised learning task, a labeled data set is required to train the model. However, the amount of
labeled data is minimal. To improve the accuracy and robustness of the model, using a teacher-student
training process was a successful approach used in ImageNet training, which called Noisy Student. In this
paper, we apply this approach to train our BERT model on a large-scale of semi-labeled tweets data.

3 Data and Preprocessing

3.1 Data Description
The OffensEval 2020 - English language track are divided into three sub-tasks:

A - Offensive language identification

B - Categorization of offense types

C - Target identification (Not attend)

In sub-task A, we predict if the post is Offensive (OFF) - Containing offensive language or a targeted
offense; or Not Offensive (NOT) - No offensive language or profanity. In sub-task B, we classify the
offenses into two types: Targeted Insult and Threats (TIN) - Containing an insult or a threat to an individual,
a group, or others; or Untargeted (UNT) - Containing non-targeted profanity and swearing.

The public training data for this task is more than 9 million sentences of tweets for sub-task A and
nearly 190 thousand sentences for sub-task B. However, there is no human label provided. Multiple
supervised models were used to score those sentences. Each sentence is given along with the average of
predicted confidences (AVG CONF) and the confidences’ standard deviation (CONF STD).

An important element for the Noisy Student training method to work well is that the teacher model
should be trained on clean labels. Therefore, to limit the noises of the given data, we only select the
sentences that have low standard deviation with the average confident scores closed to 1 (for positive class)
or closed to 0 (for negative class). A subset from the remaining data is treated as unlabeled data to use in
training student models. We do not use all provided sentences due to time and computational limitations.

As suggested by the organizers, we use the public data set from the last year’s competition (Zampieri et
al., 2019a) to evaluate the model. Details of the data set are showed in Table 1.

3.2 Data Preprocessing
On social media, people prefer to use emoji and hashtags to show their expressions. Therefore, similar to
Liu et al. (2019), we convert emoji1 and hashtag2 to English words to maintain their semantic meanings.

Another common syntax that can be found on Twitter’s posts is micro-text, which might also contain
offensive meaning (eg. ‘af’ - ‘as fuck’, ‘kys’ - ‘kill your self’, etc.). A list of microtext3 from Satapathy et
al. (2019) was used to normalize those words.

1https://github.com/carpedm20/emoji
2https://github.com/grantjenks/python-wordsegment
3https://github.com/npuliyang/Microtext Normalization/
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Figure 1: Architecture of BERT-LSTM model

We convert all text to lowercase and remove special characters as well.

4 System Description

4.1 Pretrained BERT with Tweets data

Due to the limitation of computational power, we decide not to pre-train BERT model from scratch but
fine-tune from the BERT-Large, Uncased (Whole Word Masking) checkpoint.

In BERT’s vocabulary, there are 994 tokens marked as ‘unused’. These tokens are suggested to be
used to expand the vocabulary. In our case, we only replace 150 of them with the top occurrences and
offensive-related words from the training set. We then use those tweet sentences to pre-train this BERT
model. We follow the instruction of pre-training model from Google BERT github4. However, since
tweets data are single short sentences, we modify the processing and training script to remove the Next
Sentence Prediction loss and only perform the Masked LM task.

The checkpoint we choose to train our Offensive Identifying classifier has:

masked lm accuracy = 0.667

masked lm loss = 1.749

Finally, we use the Transformers library from HuggingFace (Wolf et al., 2019) to convert the Tensorflow
checkpoint to Pytorch and perform later training process.

4.2 BERT-LSTM model

In our approach, we take the output vectors of all the word tokens. Those tokens are sent through LSTM
layers, then concatenated with the [CLS] token and finally passed to a fully connected neural network to
perform the final classification (Figure 1).
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System Macro-F1
BERT-Large, Uncased 73.4
Tweet’s BERT-Large 74.7
Tweet’s BERT-LSTM 75.3
Noisy Student Tweet’s BERT-LSTM 77.0

Table 2: Result of sub-task B on the development set with different training setup: BERT-Large, Uncased,
Tweet’s BERT-Large, Tweet’s BERT-LSTM and Noisy Student Tweet’s BERT-LSTM

4.3 Noisy Student training

Although there are a large number of tweet sentences provided as a training set, the labels are predicted by
other supervised models, many of them have low confidences with high standard deviations. To leverage
this enormous data, we use the Noisy Student training method, which was successfully applied to train the
current state-of-the-art of ImageNet challenge.

We only select the most confident instances from the training set and assign hard-label (NOT/OFF,
TIN/UNT) with the threshold of 0.5. These instances are used to train the ‘Teacher’ model.

Then we split the unlabeled data set to multiple subsets. At each iteration, we use the ‘Teacher’ model
to score one subset to generate the pseudo labels. The ‘Student’ model is then trained on both the teacher’s
training data and the new subset with those pseudo labels. Finally, we iterate the process by putting back
the student as a teacher to generate pseudo labels on a new subset and train a new student again.

To learn the first ‘Teacher’ model, we minimize the Cross-Entropy loss on hard-labeled data. Then both
soft and hard pseudo labels are generated for unlabeled data to train the ‘Student’ model. A soft label is a
discrete probability output of a the network given by

ỹsoft(i) = softmax(z)i =
exp(zi)∑
j exp(zj))

(1)

where i denotes the ith class and z denotes the logits of the network. Then a hard label is assigned by

ỹhard = argmax(ỹsoft) (2)

We use the combined objective of Cross-Entropy loss (LCE) on hard labels and Kullback-Leibler
Divergence loss (LKLDiv) on soft labels with soft-label ratio α = 0.3 to train the ‘Student’ model as in
(3).

loss = (1− α) ∗ LCE + α ∗ LKLDiv (3)

According to Xie et al. (Xie et al., 2019), a larger student model with added noise will force the model
to learn harder, hence improves its performance. In our implementation, we increase the number of Fully
Connected layers and add Dropout layers with the probability range from 0.3 to 0.5 throughout the training
process to achieve that.

5 Result

The official evaluation metric for both sub-task A and B in the competition is Macro-F1. Since the data
set of sub-task B is much smaller, during the development phase, we use it to conduct experiments and
compare the results of different training setups.

The results are evaluated on OLID’s test set with the same training hyper-parameters for all setups (e.g
learning rate, batch size). The Noisy Student model is trained as described in previous section with three
iterations (3 teacher models). The last student model is used to generate final submission. To train other
baseline models, we choose the confidence threshold of 0.5 to assign hard labels on the given training set.

4https://github.com/google-research/bert
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System Macro-F1
Noisy Student Tweet’s BERT-LSTM 81.3

Table 3: Result of sub-task A on the development set using Noisy Student Tweet’s BERT-LSTM

System Macro-F1
Sub-task A 90.59
Sub-task B 73.62

Table 4: Result on official test set

Based on the results of validation (Table 2), we choose to use the Noisy Student Tweet’s BERT-LSTM
as our selected model for the final submission.

For sub-task A, we train the model with the Noisy student method only and report the result in Table 3.
In Table 4, we report the result on the official test set on CodaLab 5. For sub-task A, we are ranked

55th with the F1 score of 90.59. However, it’s only 1.6 points lower than the first system. We suppose that
it is because we only used 1/6 of provided data to train the model. We did not achieve all the potential of
the training method. In sub-task B, our approach performed 4.5 points better than the next system. By
using the Noisy Student training method, our model can leverage the enormous amount of data despite the
noisy labels, hence improve the performance.

6 Conclusion

In this paper, we have described the system that we use to attend to the SemEval-2020 competition - Task
12, which reaches second place at sub-task B of English language track. By updating the vocabulary
and fine-tuning the BERT model from the existing checkpoint, we can quickly adapt the pre-trained
model to a new domain (Tweets). We also extend the BERT classifier by LSTM layers and use the Noisy
Student training approach to improve the accuracy and robustness of the models without human annotation
required.
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