
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 232–238
Barcelona, Spain (Online), December 12, 2020.

232

TUE at SemEval-2020 Task 1: Detecting semantic change by clustering
contextual word embeddings

Anna Karnysheva
University of Tübingen

anna.karnysheva@student.
uni-tuebingen.de

Pia Schwarz
University of Tübingen

pi.schwarz@student.
uni-tuebingen.de

Abstract

This paper describes our system for SemEval 2020 Task 1: Unsupervised Lexical Semantic Change
Detection. Target words of corpora from two different time periods are classified according to
their semantic change. The languages covered are English, German, Latin, and Swedish. Our
approach involves clustering ELMo embeddings using DBSCAN and K-means. For a more fine
grained detection of semantic change we take the Jensen-Shannon Distance metric and rank the
target words from strongest to weakest change. The results show that this is a valid approach for
the classification subtask where we rank 11th out of 21 groups with an accuracy score of 61.2%.
For the ranking subtask we score a Spearman’s rank-order correlation coefficient of 0.087 which
places us on rank 19.

1 Introduction

Although lexical semantic change has been a topic of interest for historical linguists for well over a hundred
years, the technological advances have provided new computational methods to tackle this problem. As a
result, numerous systems have been developed for corpora of different languages and time periods, using
various evaluation metrics (for a comprehensive survey see Tahmasebi et al. (2018)). However, there is
no universal evaluation framework, which makes the assessment across different approaches difficult.
Diachronic lexical semantic change detection can aid research which involves work with historical data
that is becoming accessible with the progress of digitization.

SemEval 2020 Task 1 is an unsupervised lexical semantic change detection task, consisting of
two subtasks - a classification and a ranking subtask covering English, German, Latin and Swedish
(Schlechtweg et al., 2020). Given two corpora from two different time periods, in subtask 1 individual
target words have to be classified into the binary categories of sense change or no sense change, where the
class sense change does not distinguish between a word losing or gaining sense(s). An example is the
English word bit which over time gained the sense of a ‘computational unit’, additionally to the meaning
of ‘small quantity’. Subtask 2 consists in ranking the target words according to the degree of lexical
semantic change. The word with the strongest change is assigned the highest rank.

Our approach is based on clustering contextual word embeddings with two different algorithms –
K-means and DBSCAN. To our knowledge, this approach has not been used in earlier research. However,
Giulianelli et al. (2020) recently published a paper taking a similar approach that we became aware of only
after the shared task. They describe a system that clusters contextual word embeddings using K-means.

The number and size of the clusters determine whether a word exhibits sense change or not. We
calculate the degree of change of a word with the Jensen-Shannon distance (JSD) (Lin, 1991) with
probability arrays of the cluster distributions.1

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1The source code of our model is published at https://github.com/cicl-iscl/
SemEval2020-Task1-LexSemChange.



233

Language C1 time period C2 time period k n target words size C1 size C2
English 1810-1860 1960-2010 2 5 37 6.6 6.8
German 1800-1899 1946-1990 2 5 48 70.2 72.4
Latin 200 BCE-0 0-2000 0 1 40 1.8 9.4
Swedish 1790-1830 1895-1903 2 5 31 71.1 110.8

Table 1: Corpora time periods, thresholds k and n for classification, number of target words, and approx.
corpus word counts (in million) per language.

2 Task Description

For this task we were provided with corpus C1 and corpus C2, where the time period t1 of C1 lies before
the time period t2 of C2, and a target word list for English, German, Latin and Swedish (for details about
the corpora see Schlechtweg et al. (2020)). The time periods covered in the corpora differ in their span as
well as in beginning and end dates. While there is no break between the time periods of t1 and t2 of the
Latin corpora, all other languages have breaks ranging from 47 to 100 years. In addition, whereas the
second Latin corpus covers a time period of 2000 years, all other C1 and C2 time periods do not exceed
200 years. All corpora were lemmatized, shuffled and formatted to one sentence per line. The target word
lists, consisting of nouns and verbs, are of different sizes: with German and Latin being the longest ones
(48 and 40 target words respectively), followed by English with 37 words and Swedish with 31. The word
count in the test corpora for the system evaluation ranges from 1.7 to 110 million words.

Given the corpora C1 and C2, each target word has to be classified into two categories for subtask 1.
Between the time period of C1 and the time period of C2 a target word either (i) exhibits semantic change,
meaning it has lost or gained one or several sense(s), or (ii) there has been no semantic change. For a
word to have gained a sense, the sense has to appear a maximum of k times in C1 and at least n times in
C2. For a word to have lost a semantic sense, the sense has to appear a maximum of k times in C2 and
at least n times in C1. The values for k and n were set differently for Latin (k = 0, n = 1) as it has a
smaller sample size than the other three languages (k = 2, n = 5).

For example, assuming the target word bit has two senses, the first one referring to a ‘small quantity’
and the other one to the ‘computational unit’, and the sense distribution of the meanings in C1 and C2 is
as described in Table 2. It is evident that the target word bit has acquired the sense ‘computational unit’,
as this sense was detected at most 2 times (k ≤ 2) in C1 and at least 5 times (k ≥ 5) in C2; bit is therefore
classified as (i) exhibiting semantic change.

senses bit C1 C2
small quantity 25 16
computational unit 0 8

Table 2: Word sense distribution across C1 and C2 for the target word bit (exemplary numbers).

The goal of subtask 2 is to determine the degree of lexical semantic change of each target word and
then rank all target words according to this degree, where the item with the highest degree of semantic
change is ranked first. Using the Jensen-Shannon Distance metric the word sense frequency distributions
of bit has a result bound between 0 and 1. Whereas the frequency of the first sense of ‘small quantity’ is
decreasing, it is increasing in the second sense of ‘computational unit’. The degree of lexical semantic
change can capture a change in meaning which is more fine grained than the change captured by the
classification scores from subtask 1.

3 System Overview

The key idea of our approach is to use contextualized embeddings to embed the target words and then
cluster the resulting vectors. Word embeddings are dense vector representations that encode context
information. According to the famous principle of Firth (1957) the meaning of a word depends on its



234

surrounding words, i.e. its context. As embeddings of word senses that are similar should lie close to each
other in semantic space, it should be possible to identify and discriminate groups of semantically similar
word senses by clustering their embeddings. Thus, senses (or their representations) assigned to the same
cluster should have similar meanings. If two senses end up in different clusters, their meanings are not
similar, thus we a semantic change of the sense has occurred.

While several architectures of contextual embeddings exist, we make use of the ELMo architecture. As
our primary task in subtask 1 lies in being able to track if a sense changes or not, we need to be able to
differentiate between different senses of a word. Since ELMo uses all the internal representation layers to
compute the final representation, it is supposed to capture more information at different linguistic levels
(semantics, syntax, etc.) than simple word embeddings (Peters et al., 2018). A shortcoming of pretrained
embeddings is that they are trained on non-lemmatized corpora, unlike the corpora provided by this task
which are lemmatized. This might have an influence on the quality of the embeddings we retrieve.

3.1 Preprocessing

Before clustering the word embeddings, C1 and C2 of each language are merged. This way we can make
sure that the cluster labels for C1 and C2 are the same which would not be the case if the corpora are
clustered separately. In order to be able to tell whether a target word belongs to a sentence from C1 or C2,
we collect the indices of every word (sentence and word position) in the corpora as well as the sentence
index of the boundary where C1 ends and C2 starts.

3.2 Embedding and Clustering

To retrieve the embeddings per target word, only sentences containing the target word are embedded.
Finally, with the help of the previously collected target word indices, only the target word vectors are
selected. The resulting vector coordinates (in this paper also referred to as data points) are then clustered
in the next step.

We employ two different clustering algorithms: for English and Swedish we apply the K-means (Lloyd,
1982) algorithm, and for German and Latin we use density-based spatial clustering of applications with
noise (DBSCAN) (Ester et al., 1996). Although we have tried applying both algorithms on all four
languages, the combinations described above seem have yielded better results for the given task. The
advantage of DBSCAN over K-means is that it does not require initialization with the number of clusters,
which, in our case, is different for each target word. Moreover, the shape of the clusters has less of an
impact on DBSCAN than on K-means. Although the advantages of DBSCAN are clear, there is also a
downside to using it, as DBSCAN needs two hyperparameters: minimum samples, the minimum amount
of data points for a sample to be considered a core sample, and epsilon, the maximum distance between
these data points, while K-means settles for a single one.

Figure 1: Scree plot with the “elbow” at K = 2

To address the issue of initializing K-means clustering with a value for the number of clusters we use a



235

dynamic approach to find K automatically for each target word.2 The possible values that K can take
are set through a range. In our model, the upper bound of the range is 10, meaning that the K-means
clustering is ran with values from 1 to 10. K-means converges when the squared error of the distance
between the data points and their cluster center reaches a local minimum. Plotting this value against the
different values of K results in a scree plot which usually depicts a line with an “elbow” (circle marked
line in Figure 1). To automatically find where the elbow lies, another line (dotted) connecting both ends
of the squared error line is inserted. The maximum of the distance (peak of the solid line) from the dotted
line to the line representing the squared error is exactly where the elbow is found. The connecting line
always starts from the squared error where K is lowest, i.e. where K = 1; the distance will thus always
be 0 there (the same applies to the distance at K = 10). To allow for a word to have a single cluster we
therefore need to insert an artificial value for K = 0. This value for K = 0 is computed by multiplying
the value for K = 1 with a factor t where 1 < t ≤ 2, leading to another hyperparameter that needs to be
tuned.

3.3 Determining Class and Degree of Change

The previous clustering step results in a list of labels which is split into two separate lists, the labels for C1
and C2. After counting the distinct labels and their number of occurrences in both lists, the target word
is classified accordingly into (i) there is semantic change or (ii) there is no semantic change, taking into
account the thresholds of k and n (see Table 1) from the specifications of subtask 1.

target word Clusters (label: occur.) Probability distribution

C1 0: 18, 1: 53, 2: 9 [1880 , 53
80 , 9

80 ]

C2 0: 51, 1: 2 [5153 , 2
53 , 0]

Table 3: Cluster and probability distributions of a target word (exemplary numbers).

Based on these label lists for C1 and C2, we also compute the degree of semantic change required for
subtask 2 by converting the cluster distributions into corresponding probability distributions as exemplified
in Table 3. These probability distributions are used to calculate the degree of lexical semantic change
using the SciPy implementation of the Jensen-Shannon Distance metric (Virtanen et al., 2020).

4 Experimental Setup

For German, Latin and Swedish we employ Pre-trained ELMo Representations for Many Languages
which are trained on a corpus of 20 million tokens. (Che et al., 2018).3 Although there was an available
English model from Che et al. (2018) as well, we decided to use Deep contextualized word representations
for English, a model implementation of ELMo trained on a 1 billion word benchmark, primarily due to
the substantially greater corpus size of its training data (Peters et al., 2018).4

In total, our system has three hyperparameters: minimum samples and epsilon for DBSCAN and t for
K-means (Pedregosa et al., 2011) which we tune on two embedding settings.5 While the first setting
uses the target word embeddings, the second setting uses embeddings of the context around the target
word (i.e., the sentence in which the target word appears, with the target word excluded). However, we
only report results of the first settings with target word embeddings due to substantially worse results
with context embeddings during the tuning process. We did not have a development set available as the
target word predictions of the trial data provided were randomly assigned, meaning that they do not reflect
real values. Instead, we draw on the binary change score from a data set based on the SemCor corpus as
development data to tune our English model (Schlechtweg and Schulte Im Walde, 2020). As the Latin
corpora provided by the organizers contain homonym annotations, which indicate different senses of

2We adopted the idea from Bhavesh Bhatt, available at https://www.youtube.com/watch?v=IEBsrUQ4eMc.
3Available at https://github.com/HIT-SCIR/ELMoForManyLangs.
4Available at https://tfhub.dev/google/elmo/3.
5See Appendix for all other parameters for the DBSCAN and K-means algorithms.



236

homonyms, we use those to train Latin.6 For K-means, we obtain the highest accuracy scores with t = 1.3
for English and t = 1.7 for Latin. For DBSCAN tuning results in epsilon = 5, min.samples = 2
for English and epsilon = 3.5, min.samples = 3 for Latin. Due to the lack of development data for
Swedish and German we use the settings from English for these two languages. Mainly because they
also belong to the Germanic language family, and moreover, the respective time periods of the corpora
resemble each other in comparison to the time period of the Latin corpus. The combination of K-means
and DBSCAN that yields the highest score during evaluation are K-means for English and Swedish and
DBSCAN for German and Latin. The baselines for the tasks are the majority class baseline for subtask
1; subtask 2 has two baseline models: normalized frequency difference and count vectors with column
intersection and cosine distance (Schlechtweg et al., 2020).

5 Results

For subtask 1, the results are evaluated against binary annotations done by humans. Our results for all
four languages reach an average accuracy of 61.2%. This corresponds to an overall rank 11 out of 21
participating groups, where the accuracy lies between 41.3% and 68.7%. Our best individual accuracy
score is the one for Latin with 65%.

Language and clustering algorithm Accuracy SPR
English (K-means) 56.8 % −0.155
German (DBSCAN) 58.3 % 0.388
Latin (DBSCAN) 65 % 0.177
Swedish (K-means) 64.5 % −0.062

Average 61.2 % 0.087

Table 4: Results for subtask 1 (accuracy) and subtask 2 (SPR).

Subtask 2 is evaluated using the Spearman’s rank-order correlation coefficient (SPR) against real human
annotations as well. Our average score over all four languages is 0.087. Other participants’ scores range
from the best score of 0.527 to -0.083. Here, our best individual score is 0.388 for German.

Looking at the predictions our system outputs for English in subtask 1, we see that all target words are
classified into the same class which might indicate an error in our system and is probably the reason for
the low accuracy score of 56.8%. Moreover, our rather low scores for subtask 2 suggest that using the
cluster distributions from subtask 1 without any further processing than using JSD is not ideal.

6 Conclusion

We show that tackling unsupervised detection of lexical semantic change by using well known clustering
algorithms combined with contextual word embeddings is a valid approach. Although our accuracy
scores are above the score of the baseline model, our system is far from perfect, as shown by our results
for subtask 2. A possible improvement of the current model would be to train ELMo on corpora that
contain the target words instead of using pre-trained embeddings. This would also resolve the issue
of using embeddings trained on unlemmatized data while the actual test data is lemmatized. Through
applying pre-trained embeddings of unlemmatized data to lemmatized data, part of syntactic and semantic
information might be lost. Additionally, results could be improved by narrowing down the context window
with using only a few words before and after the target word, instead of taking the whole sentence. Other
aspects for future work might be to experiment with different contextual word embeddings such as BERT,
and applying clustering algorithms that account for more varied cluster shapes as for example DBSCAN
does.

6The reference for the annotation is the Lewis-Short dictionary, an example would be the word dico, available at http:
//www.perseus.tufts.edu/hopper/morph?l=dico&la=la#lexicon.



237

Acknowledgements

We want to thank Çağrı Çöltekin for his topical as well as technical assistance during this project.

References
Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. 2018. Towards better UD parsing: Deep

contextualized word embeddings, ensemble, and treebank concatenation. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 55–64, Brussels, Belgium,
October. Association for Computational Linguistics.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, page 226–231. AAAI Press.

J. R. Firth. 1957. A synopsis of linguistic theory 1930-55. 1952-59:1–32.

Mario Giulianelli, Marco Del Tredici, and Raquel Fernandez. 2020. Analysing lexical semantic change with
contextualised word representations. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3960–3973. Association for Computational Linguistics, jul.

J. Lin. 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory,
37(1):145–151.

Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–
137.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-
ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research, 12(85):2825–2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, June. Association for Computational
Linguistics.

Dominik Schlechtweg and Sabine Schulte Im Walde. 2020. Simulating lexical semantic change from sense-
annotated data. In A. Ravignani, C. Barbieri, M. Martins, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little,
K. Mudd, and T. Verhoef, editors, The Evolution of Language: Proceedings of the 13th International Conference
(EvoLang13).

Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, and Nina Tahmasebi. 2020.
Semeval-2020 task 1: Unsupervised lexical semantic change detection. To appear in SemEval@COLING2020.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. 2018. Survey of computational approaches to lexical semantic
change.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272.



238

Appendix

Parameter settings of DBSCAN and K-Means:

DBSCAN K-means
metric=euclidean init=k-means++
metric params=None n init=10
algorithm=auto max iter=300
leaf size=30 tol=1e-4
p=None precompute distances=auto
n jobs=None verbose=0

random state=None
copy x=True
n jobs=None
algorithm=auto


