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Abstract

This paper presents the approach of Team KAFK for the English edition of SemEval-2020 Task
12. We use checkpoint ensembling to create ensembles of BERT-based transformers and show
that it can improve the performance of classification systems. We explore attention mask dropout
to mitigate for the poor constructs of social media texts. Our classifiers scored macro-f1 of 0.909,
0.551 and 0.616 for subtasks A, B and C respectively. The code is publicly released online.

1 Introduction

The research community has put much effort over the last few years in developing automated detection
methods to combat hate speech in social media (Schmidt and Wiegand, 2017). But the complex nature of
this phenomenon shows that it has no single solution. The second edition of the OffensEval Workshop
(Zampieri et al., 2020), titled OffensEval-2020, is organized with the goal of promoting further research
in this domain.

The OffensEval-2020 workshop features shared subtasks in five different languages. We participated in
the English language which consists of three subtasks (A, B and C). Each subtask is a breakdown of the
taxonomy of offensive content. Subtask A (Offensive language identification) is the classification of a
post as offensive [OFF] or not offensive [NOT]. Subtask B (Automatic categorization of offence types)
determines whether a post containing an insult or a threat is targeted towards an individual, a group, or
other [TIN] or simply contains non-targeted profanity and swearing [UNT]. And Subtask C (Offense
target identification) is the identification of the target of an offensive post. The targets being individual
[IND], group [GRP] and other [OTH].

2 Related Work

Zampieri et al. (2019b) organized OffensEval-2019 where the participants were provided with a dataset
of 14,200 annotated tweets (Zampieri et al., 2019a) to perform fine-grained classification of hate speech.
HatEval (Basile et al., 2019) is another workshop on the detection of hateful content, specifically, hate
speech against women and immigrants in Twitter posts. In this workshop the participants used various
approaches such as SVM, sentence and word level embeddings, LSTMs (Hochreiter and Schmidhuber,
1997), Logistic Regression, etc., to build their classification systems, for example, (Baruah et al., 2019;
Indurthi et al., 2019). HASOC 2019 (Mandl et al., 2019) was organized with a similar goal, but with a
specific interest in Indo-European languages, namely Hindi, English and German. The top-performing
systems in HASOC mostly made use of neural network models such as BERT (Devlin et al., 2019),
Convolutional Neural Networks (CNN), LSTMs and multilingual embeddings. Other workshops like
TRAC (Kumar et al., 2018; Kumar et al., 2020) focused on the identification of aggression in social media
text. These workshops featured tasks that consisted of building classifiers that could discriminate between
Overtly Aggressive, Covertly Aggressive, and Non-aggressive texts.
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3 Data

The dataset for the English edition of SemEval Task-12 is compiled by Rosenthal et al. (2020). It is a large
scale dataset of loosely labelled text samples, i.e, each sample is associated with an Average Confidence
measure and it’s Standard Deviation. Average Confidence is the average of the confidences with which
numerous supervised models predicted an instance as belonging to the positive class for a subtask. The
positive class is OFF for subtask A, and UNT for subtask B. The dataset of subtask C has no positive
class, instead, the average confidence of each class is given. In our study, we assign an instance to a class
if its average confidence for that class is greater than or equal to 0.50. The label counts for each subtask is
given in Figure 1.
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Figure 1: SemEval-2020 Dataset Sample Counts

4 Methodology
4.1 Checkpoint Ensembling

Model Ensembling refers to the method of constructing a single classifier from a collection of different
classifiers (Dietterich, 2000). However, creating ensembles of large Deep Neural Networks (DNNs), like
the ones used in this study, is an expensive task. It is generally not possible to train multiple models with
limited time and GPU resources. Hence, based on the work by Chen et al. (2017), we used a simple
Checkpoint Ensembling method for creating the transformer-based ensemble classifiers used in this study.

In Checkpoint Ensembling, a copy of the model is saved at each checkpoint. These copies are later
combined in some fashion to make the classification (see Figure 2a). In contrast, a traditional ensemble
usually combines different models (see Figure 2b). In our checkpoint ensembling approach, we save the
dev set predictions and weights of the DNN models at each epoch and apply Algorithm 1 to determine
which models to use for the ensemble. Algorithm 1 uses the dev set predictions to create a list of models
to use in the ensemble. Algorithm 1 picks a model if using its predictions improves the metric (macro-fl
for OffensEval), otherwise not. Algorithm 1 is called twice with reverse set to True and then False. If
the ensemble doesn’t improve the metric, we can simply choose the best model found during training.
After determining the models, we apply Algorithm 2 to get the final predictions. Algorithm 2 simply adds
the predictions of the classifying layer of the chosen models and uses argmax along each row to get the
final prediction.

4.2 Classifiers

This section describes the classifiers built for each of the subtasks of OffensEval-2020. All of the classifiers
described below follow the basic transfer learning procedure as shown in Figure 3. The classifiers and
their training routines are written using PyTorch! (Paszke et al., 2019). The data splits are made such that
the percentage of samples for each class is the same in each split. The random seed is set to 42 wherever

applicable. The code has been made public for reference 2.

'https://pytorch.org/
https://github.com/cozek/OffensEval2020-code
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Figure 2: Ensembles. The square boxes are models at each step of a training process. Lighter shade means
better performance. P is the final prediction made by the ensemble.

Algorithm 1 Naive Checkpoint Ensemble

1: A + True labels, reverse < boolean

2: P < Model predictions at each epoch

3: N < Number of samples, C' <— Number of classes
4: function ENSEMBLE(P, A, N, C, reverse)

5 models < {},val < 0
6: Z|N][C] < Zero Matrix
7: € < len(P) > Number of Epochs
8: if reverse then
9: range < €to 0
10: else
11: range <— 0to e
12: end if
13: for (e < range) do
14: temp < Z
15: temp < temp + Ple]
16: if metric(A,temp) > val then
17: Z«+— Z+P
18: models < models U e
19: val < metric(A, temp)
20: else
21: continue
22: end if
23: end for
24: return models, val

25: end function

Algorithm 2 Make Prediction

1: m < model ids chosen for ensemble
E[N][C] ¢ Zero Matrix

3: for i inm do

4 Load model with weights at epoch ¢
5 p < model.predict(samples)

6: E+—FE+p
7

8

»

: end for
: preds < Index of max element in each row of F/
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Figure 3: Transfer Learning Model

4.2.1 Subtask A: Ensembled GPT-2

GPT-2 is a large transformer-based (Vaswani et al., 2017) language-model developed by Radford et
al. (2019). Its is trained on 40GB of internet text and has many capabilities, the main being able to
generate synthetic text. The text generated of such high quality that it can easily be mistaken for being
human-written.

Due to GPT-2’s extremely large-size (1.5 billion parameters), it requires a lot of time and resources to
train. So, we used DistilGPT-2 instead. Distil* (Sanh et al., 2019) is a class of compressed transformer-
based models that has faster training and inference time while being small in size. These models are
meant to enable the use of large high-performance models in a production environment. The authors of
distil* show that it retains up to 97% performance of the original models. Also, Distil* enabled us to work
on the massive datasets of OffensEval-2020 with high-performance base models with modest computing
resources. This model is used for building the classifier for subtask A.

We used 70% of the data for training and 13633 samples for validation. We used a small subset for
validation as we did not have enough time to obtain inferences on the entire remaining 30% (=~ 2.7 x 106
samples). For training the classifier, we first converted each text sample into a sentence-matrix by
extracting 786 — dimensional word embeddings from pre-trained DistilGPT-2. These were then fed
into a dense layer having c units which makes the classification. Here c is the number of classes. We
fine-tuned the entire model using a cross-entropy loss-function with a small learning rate of 1e — 4 for 5
epochs and applied Checkpoint Ensembling as described in Subsection 4.1. For optimizing the model,
we used Ranger which is a combination of two optimizers, RAdam (Liu et al., 2019a) wrapped with
LookAhead (Zhang et al., 2019). We set the (k, ) parameters of the optimizer to (5,0.5). The batch-size
and maximum-sequence length were set to 399 and 64 respectively. Checkpoint ensembling improved the
dev set macro-f1 score from 0.9656 to 0.9663.

4.2.2 Subtask B: Ensembled RoBERTa

Liu et al. (2019b) identified the short-comings of BERT (Devlin et al., 2019) and introduced RoBERTa,
a robustly optimized version of BERT. We used it’s pre-trained version for subtask B. We coupled
Checkpoint Ensembling with the pre-trained Roberta Sequence Classifier by Wolf et al. (2019). The
classifier was trained for 20 epochs with early stopping patience set to 4. We used 85% of the data as
train set and the rest as dev set. The maximum sequence length was set to 245 and batch size used was
128. The other parameters and hyper-parameters were kept the same as that of subtask A. Checkpoint
ensembling improved macro-fl on the dev set from 0.8881 to 0.8907.

4.2.3 Subtask C: Ensembled DistilRoBERTa with Attention Mask Dropout

This classifier was built using the pre-trained distilled version of Roberta Sequence Classifier by Wolf et
al. (2019), coupled with a slightly modified Checkpoint Ensembling. Instead of directly using the dev set
predictions, we first sorted it in decreasing order of their macro-f1 scores. We also applied a drop out to
the attention masks. Attention masks specify which of the tokens of the sentence the model should attend
to. With probability p, we randomly dropped d% of attention masks of the tokens in the sentence. We set
pto 0.50 and d to 30%. We used attention mask dropout in an attempt to mitigate the poor grammar which
is often encountered in social media texts. Similar to the original dropout technique (Hinton et al., 2012),
it was only used during training. The maximum sequence length was set to 245. The pre-trained model

2026



was fine-tuned using a cross-entropy loss function for 20 epochs with early stopping patience set to 4. We
used a batch-size of 120 and learning rate of 1e — 04 with Ranger optimizer. Like in previous classifiers,
we set the (k, o) parameters of the optimizer to (5, 0.5). Here 95% of the labelled data was used for
training and the rest as dev set. Ensembling improved the dev set macro-f1 from 0.8148 to 0.8281.

5 Results and Error Analysis

Model Macro F1 Rank

Dev Set  Test Set Best
Subtask A Ensembled DistilGPT-2 0.9663 0.90989 0.92226 25
Subtask B Ensembled RoBERTa 0.8907 0.55181 0.74618 31
Subtask C Ensembled DistilRoBERTa  0.8281 0.6168  0.7145 15

Table 1: Results

The dev and test set results for each of the classifiers are given in Table 1. The test set contained 3887,
1422, 850 text samples for subtasks A, B and C respectively. Ensembled DistilGPT-2 was able to cross
the 0.90 mark. Perhaps using the full dataset instead of just 70% might have resulted in a better score.
This shows the need for techniques like model quantization to deal with massive datasets. Ensembled
RoBERTa and Ensembled DistilRoBERTa performed quite poorly. They clearly overfit the data as the
difference between the dev set and test set f1 scores is quite large. Later experimentation revealed that
attention mask dropout in subtask C hurt the performance of the model. Without it, the dev set macro-f1
was 0.8275 and sorted checkpoint ensembling improved the score to 0.8336.
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Figure 4: Confusion Matrices

Ensembled DistilGPT-2 for Subtask A was able to correctly classify every offensive sample, except for
two which were predicted as not offensive. Those two samples being ® “@USER @ USER Dehumanize?
He barely has a reflection of human” and e “@USER @USER ‘Respect the result’ is a mendacious
soundbite trotted out by charlatans daily”. This was perhaps due to the complex use of language, use of
rare words such as mendacious, trotted and absence of typical profane words. As seen from the confusion
matrix in Figure 4a, this classifier had a bias towards the offensive class.

Ensembled Roberta for Subtask B performed poorly. It failed to distinguish properly between targeted
and untargeted samples. Untargeted samples such as @ “@USER Yeah my deck was insane that run, but
normally I suck lol ” were predicted as targeted. We found that samples which contained the “@USER”
token were mostly mistaken as targeted. The confusion matrix is given in Figure 4b.
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Ensembled DistilRoberta for Subtask C misclassified most of the samples of ‘other’ class as targeting
individuals, as apparent from its confusion matrix in Figure 4c. The same effect can be seen in the group
class. Also, we found that this classifier made many mistakes where emojis are used. For example ® “ I'm
the only ¢ to get the job done ..... ion kno a nigga dat can cover for me” is misclassified as belonging to
the individual class rather than group targeted. In this example, the * ¢ > emoji is being used to denote
“one”. The model was unable to get the context from the emojis.

6 Discussion and Conclusion

In this work, we built three different transformer-based classifiers for the three subtasks of OffensEval
2020. We created ensembles using Checkpoint Ensembling. Although checkpoint ensembling improved
the performance of the classifiers, the improvements were quite small. But, considering how cheap and
simple the method is, it can’t be dismissed completely. We found that attention mask dropout did not work
as expected. We feel that more tuning of the p and d hyper-parameters might have been necessary to get it
to work properly. In future work, we would like to explore and evaluate more sophisticated ensembling
methods such as the Meta Classifier by Malmasi and Zampieri (2018).
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