
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1998–2005
Barcelona, Spain (Online), December 12, 2020.

1998

IR3218-UI at SemEval-2020 Task 12: Emoji Effects on Offensive
Language Identification

Sandy Kurniawan1, Indra Budi2, Muhammad Okky Ibrohim3

Faculty of Computer Science
Universitas Indonesia

Kampus UI, Depok, 16424, Indonesia
1sandy.kurniawan@ui.ac.id, {2indra, 3okkyibrohim}@cs.ui.ac.id

Abstract

In this paper, we present our approach and the results of our participation in OffensEval 2020.
There are three sub-tasks in OffensEval 2020, namely offensive language identification (sub-task
A), automatic categorization of offense types (sub-task B), and offense target identification (sub-
task C). We participated in sub-task A of English OffensEval 2020. Our approach emphasizes on
how the emoji affects offensive language identification. Our model used LSTM combined with
GloVe pre-trained word vectors to identify offensive language on social media. The best model
obtained macro F1-score of 0.88428.

1 Introduction

Offensive language has become severe problems with the rapid growth of people using social media
platforms such as Twitter. On social media, users can easily express their opinion about any topic which
leads to some users posting offensive content while engaging in social media. The offensive contents
sometimes are used to target another user, whether individual or particular groups based on the user’s
views. An automatic method of identifying offensive language is needed to prevent the spread of offensive
content on social media.

Zampieri et al. (2020) organized the OffensEval 2020: Multilingual Offensive Language Identification
in Social Media as Task 12 on SemEval-2020. OffensEval 2020 covers multilingual language consists of
Arabic, Danish, English, Greek, and Turkish. The main focus of OffensEval 2020 is to solve problems
on how to identify the offensive language (sub-task A), offense types categorization (sub-task B), and
offense target identification (sub-task C). Sub-task A ran for all languages while sub-task B and sub-task
C only ran for English.

Our approach used a neural network model based on Long Short-Term Memory (LSTM) in order
to identify offensive language on English tweets. This paper mainly describes our submission for
OffensEval-2020 Sub-task A, but our model can be further developed to learn other sub-tasks.

This paper is organized as follows. Related work has been discussed in section 2, dataset and metho-
dology have been described in section 3. The experiment results and discussions described in section 4.
Section 5 concludes the research and the future works of the research.

2 Related Work

Many research on offensive language identification has been done. Wiedemann et al. (2018) studied
the potential of transfer learning in automatic offensive language detection. They employ many transfer
learning scenarios to train their neural network. The results proved that transfer learning improves
offensive language detection performance. Ramakrishnan et al. (2019) used an ensemble model based on
logistic regression and tree-based model to identify offensive language on SemEval-2019 Task 6. Char
n-grams, word n-grams, part of speech and GloVe embedding were used as features. By combining 5
different models with the varying feature set as input, an ensemble model was built. Using the ensemble
model, the offensive language identification obtained an accuracy of 0.80 and macro F1 score of 0.74.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



1999

Recently, deep learning approach was used in many text classification problems. Xiao et al. (2018)
compared several classification models such as K-Nearest Neighbors (KNN), convolutional neural network
(CNN) and LSTM for patent text classification. Their results showed that LSTM outperformed other
models with 93.48% accuracy. LSTM was also used by Makarenkov et al. (2019) for political perspective
identification in online news articles. They experimented using various hyper-parameter setting for the
LSTM network such as word embedding source, memory size, word cutoff and batch size. Their best
result obtained Area under the ROC Curve (AUC) score of 0.966.

Ayvaz and Shiha (2017) conducted a study about emoji usage in social media and its impact on
sentiment analysis. Their study reveals that emoji have a significant effect on improving the sentiment
scores both on the positive and negative opinions. Another emoji-related study was done by Singh et al.
(2019). This study compared two emoji-handling strategies, the first is to use separate embedding for
emojis, and the other is to use textual replacement for emojis combine with word embedding. Emoji2Vec
(Eisner et al., 2016) is used as the emoji embedding, and the word embedding used is provided by Baziotis
et al. (2018) using Word2Vec trained on 550 million tweets. The results showed that using textual
replacement for emoji produced better performance than using separate embedding for emojis.

Based on the previous description, in this study, we want to identify offensive language on Twitter
using LSTM as the model classification. LSTM was used as the model classification since it showed good
performance in text classification task based on the study done by Xiao et al. (2018) and Makarenkov et
al. (2019). Based on the study of Singh et al. (2019), we want to implement the same strategy in order to
study the effect of emojis on offensive language identification. The difference is that the word embedding
used for our study is provided by GloVe (Pennington et al., 2014), which provide pre-trained Twitter
corpus more than the one provided by Baziotis et al. (2018).

3 Dataset and Methodology

3.1 Dataset

The dataset used in this task is Semi-Supervised Offensive Language Identification Dataset (SOLID), a
semi-supervised annotated dataset based on OLID (Zampieri et al., 2019) as the seed dataset, provided
by Rosenthal et al. (2020). The dataset consists of 9089140 tweets, and the testing data consists of 3887
tweets. The dataset example is shown in Figure 1. The dataset provided information about the tweet id,
the tweet text, average agreement score, and standard deviation agreement score. The average agreement
score is the average of confidences obtained from several supervised models for the tweet belong to the
offensive class (OFF). The standard deviation agreement score is the confidence standard deviation of
average agreement score for each tweet.

Figure 1: Dataset Example

Since the dataset did not provide the final label, we have to decide the final label using our method. In
addition, the dataset also consists of tweets that use languages other than English. Based on these, we did
not use all the provided dataset as training data in our research.

The first process in selecting training data is to detect the language of the tweet. We decided to use
language detection because when we explored the dataset, we found that some of the tweet languages
were not in English. Thus, we used language detection and only kept English tweet in our dataset. For
detecting the tweet’s language, we used whatlangid1 python library. The tweets in English are selected for

1https://pypi.org/project/whatlangid/



2000

the next process. The following process is to label the tweet into offensive class (OFF) or not-offensive
class (NOT). The tweet is labelled into offensive class if its average agreement score is more than 0.5. As
for the not-offensive class, we select the tweet with the lowest average agreement score after sorting the
tweet’s ranking based on the average agreement scores. Because the amount of offensive tweet is less
than the not-offensive tweet, we only keep the amount of not-offensive as many as the offensive tweets to
balance the number of instances. The selected data then used as training data.

OFF NOT Total OFF NOT Total
Training 1372913 1372913 2745826 Training 265787 297509 563296
Testing 1080 2807 3887 Testing 168 634 802

(a) Dataset Details (b) Dataset with Emoji Details

Table 1: Dataset with Emoji Details

Table 1a shows the detail amount of data used in this research. From 9089140 tweets provided in the
dataset, we selected 2745826 tweets as the training data. The training data consists of 1372913 for both
offensive and not-offensive class tweets. For classification model development, 20% of the training data
was used as the validation set. Thus, 549165 tweets were used as validation data. As for testing data, a
total of 3887 tweets consists of 1080 offensive class tweets and 2807 not-offensive tweets.

As we were trying to understand the effect of emoji, Table 1b shows our result in detecting the emoji
contained in the data. From the training data, 563296 tweets contained emoji, consist of 265787 offensive
class tweets and 297509 not-offensive class tweets. There are 802 tweets with emoji in the testing data,
168 tweets from offensive class and 634 tweets from not-offensive class.

3.2 Methodology

In this subsection, we described our approach for OffensEval 2020. The research flowchart of our approach
is shown in Figure 2. The research flowchart consists of some processes, including data preprocessing,
model building, and testing.

Figure 2: Research Flowchart

3.2.1 Data Preprocessing
Data preprocessing was meant to prepare the data so that it can be used in the next process. The output of
preprocessing made it available for machine learning to understand the data. For our experiment, we used
several preprocessing methods, including emoji handling, punctuation removal, case folding, stopwords
removal, and word stemming.

The emoji can be handled in two different ways. The first is to remove the emoji completely from the
data, and the later is to replace the emoji into a phrase that represents the emoji. In order to replace the
emoji with phrases that represent the emoji, we used the emoji2 python library provided by Taehoon Kim
and Kevin Wurster. The emoji replacement phrase example is shown in Table 2. Then, we cleaned the
data by doing punctuation removal, case-folding the data into lower case, and removing stopwords in the

2https://pypi.org/project/emoji/



2001

data. Following this process, a stemming process is applied to the tweets using the snowball stemmer
algorithm (Porter, 2001). For stopwords removal and stemming process, we used NLTK3 python library
provided by (Bird et al., 2009).

Emoji Replacement Phrase
:grinning face:
:face with tears of joy:
:face with steam from nose:

Table 2: Example of Phrase Replacement for Emojis

3.2.2 Model Building
After the training data was preprocessed, the training data was used to train our neural network model.
Several layers are used in our neural network model such as embedding layer, LSTM layer, pooling layer,
dropout layer and fully connected layer. The structure of the classification model used in this research is
shown in Figure 3.

Figure 3: Model Structure

The first layer is the embedding layer. In this layer, the data representation was changed into a dense
vector representation. The vector can be learned from scratch using the training data or build from pre-
trained word vectors from another data source. We used pre-trained word vectors provided by Pennington
et al. (2014) called GloVe. GloVe has several pre-trained word vectors that can be used which are created
based on Wikipedia data, Twitter data and Common Crawl data. Since the training data was tweets,
we used the Twitter pre-trained GloVe word vectors. As the emoji handling is done first before other
preprocessing step, the replacement phrase also gets preprocessed like any other text in the data. This
way, the replacement phrase won’t become out-of-vocabulary features from the GloVe Twitter pre-trained
training corpus. The replacement phrase will become features that represent the emoji in the data.

Then the vectors were used as input of the LSTM layer. Introduced in 1991, LSTM (Hochreiter and
Schmidhuber, 1997) has been used in many tasks such as sentiment classification (Rao et al., 2018),
image captioning (Xu et al., 2017), and language translation (Guo et al., 2018). We used LSTM in our
architecture because LSTM is believed able to overcome the vanishing gradient problem. LSTM solves the
problem by utilizing its component such as input, output, and forget gates, to manage which information
needed to keep or forget.

The next layer is the pooling layer. Pooling layer was used to reshape the 3D tensor into a 2D one. We
used a global average pooling to reduce complexity. The next four-layer consists of two pair of dropout
layer and fully connected layer. We used dropout (Srivastava et al., 2014) in order to avoid overfitting.
Dropout is done by randomly dropping neurons on the network with their connection in each iteration on

3http://nltk.org/



2002

the training phase, so it is equally the same as training different neural networks. In our model, we applied
a dropout rate of 0.1 in the dropout layer. Fully connected layer are layers where the inputs are connected
to every activation unit of the next layer. This layer can be used as feature extraction or classification. We
used two fully connected layers, the first layer was used as feature extraction with ReLU as the activation
function, and the later was used to classify the dataset with Sigmoid activation function.

The neural network model training process was running for ten epochs. We tried to use 15 as the epochs
training, but the model validation results using validation data showed signs of overfitting, so we decided
to use ten epochs as our training epochs. Binary cross entropy was used as loss function, and Adam
(Kingma and Ba, 2014) was used as the optimizer with learning rate of 0.001. The training process was
set to save the model with the best validation results within ten epochs. The model will be used as the
classification model in the testing process.

3.2.3 Testing
The testing process started after the classification model has been determined. The testing data was
preprocessed first using the same method as the preprocessing process done for training data. After it
was preprocessed, the classification model predicted the class for each testing data. Then the result was
evaluated using precision, recall, and macro F1-score.

4 Experiments Results and Discussion

This research was done to explore the effect of emoji on offensive language identification. To do that,
we proposed two preprocessing scenarios for offensive language identification. In general, each scenario
follows the following processes: emoji handling, punctuation removal, case folding, stopwords removal,
and word stemming. The difference is that in the first scenario, the emoji will be handled by removing
them from the data while in the second scenario, the emoji will be handled by replacing the with phrases
that represent the emoji. We used Macro F1-score to evaluate the performance of our results as it was the
standard evaluation score requested by OffensEval 2020. We also evaluate the results in precision and
recall to understand the results better. The evaluation metrics were computed using Scikit-Learn4 python
library (Pedregosa et al., 2011).

PREDICTED PREDICTED
NOT OFF ALL NOT OFF ALL

ACTUAL
NOT 2251 556 2807

ACTUAL
NOT 2411 396 2807

OFF 2 1078 1080 OFF 1 1079 1080
ALL 2253 1634 3887 ALL 2412 1475 3887

(a) Scenario 1 (b) Scenario 2

Table 3: Result Confusion Matrix

OffensEval 2020 only announce the F1-score and ranking of the participants’ last submission for the
competition. However, the gold labels for the testing data have been provided after the competition ends.
We could analyze our approach based on this provide gold labels. We used the confusion matrix to explore
the distribution of the classification for each class. The confusion matrix is shown in Table 3. From
the confusion matrix, we calculate precision, recall and F1-score for each class and the macro average
precision, recall and F1-score for each scenario. The evaluation metrics for each scenario is shown in
Table 4.

Based on the results, our approach shows good performance by successfully classifying almost all
offensive tweets correctly, with only two misclassifications in scenario 1 and one misclassification in
scenario 2. However, our method is too sensitive towards offensive language. This is indicated by the
many misclassifications of not-offensive tweets which are considered as offensive tweets.

4https://scikit-learn.org/



2003

Prec Rec F1 Pre Rec F1
NOT 0.99911 0.80192 0.88972 NOT 0.99958 0.85892 0.92393
OFF 0.65973 0.99814 0.79439 OFF 0.73152 0.85892 0.84461
Macro 0.82942 0.90003 0.84206 Macro 0.86555 0.92899 0.88428

(a) Scenario 1 (b) Scenario 2

Table 4: Sub-task A Results.

Figure 4: Top-10 Emoji for Each Class

In order to analyze the effect of emoji on offensive language identification, we count the emoji
occurrences in the dataset. The emojis were ranked for its appearance in each class. The top-10 ranked
emoji in the testing dataset is shown in Figure 4. The top-10 emoji in not-offensive class consists of
positive emoji such as heart-shaped emoji, hand-gestures emoji, and smiling-face emoji while for the
offensive class top-10 emoji consists of negative emoji such as angry-face emoji, and emoji with negative
interpretation such as sweat droplets, tongue, and zombie. The various emojis used in each class can help
the classifier distinguish between the two classes.

5 Conclusion

Offensive language identification is crucial in nowadays era. Almost in every social media platform,
offensive language exists and disturbing its users. OffensEval 2020 is organized to explore and improve
on offensive language identification. This paper presents our system description on participating at
OffensEval 2020/ SemEval-2020 Task 12 sub-task A. We studied the effect of emoji in offensive language
identification using LSTM and GloVe embedding.

We can conclude that replacing emoji into phrase improve the model performance. The improvement
is indicated by an increase in the F1-score between scenario 1 (emoji removal) and scenario 2 (emoji
replacement). Scenario 1 obtained the F1-score value of 0.84206 while scenario 2 obtained a better
F1-score, with a value of 0.88428. This improvement occurs because the dataset has more features to
analyze from the emoji replacement phrase where each emoji has a tendency towards certain classes.
However, our models were too sensitive with offensive language. This is proven by the number of
misclassification obtained for both scenarios. Out of 2807 not-offensive tweets, 556 tweets in scenario 1
and 396 tweets in scenario 2 were misclassified as offensive tweets by our models.

For future work, we want to explore the dataset selection method to improve our results. The dataset
used in this research showed that the model was too sensitive in detecting offensive language. In addition,
as OffensEval 2020 provides multilingual offensive language dataset, we plan to study how to identify
offensive language on a multilingual dataset.

Acknowledgements

The authors gratefully thank Universitas Indonesia for the International Publication (PUTI Prosiding)
Grants No. NKB-877/UN2.RST/HKP.05.00/2020 Year of 2020.



2004

References
Serkan Ayvaz and Mohammed Shiha. 2017. The effects of emoji in sentiment analysis. International Journal of

Computer and Electrical Engineering, 9:360–369, 01.

Christos Baziotis, Nikos Athanasiou, Pinelopi Papalampidi, Athanasia Kolovou, Georgios Paraskevopoulos, Niko-
laos Ellinas, and Alexandros Potamianos. 2018. Ntua-slp at semeval-2018 task 3: Tracking ironic tweets using
ensembles of word and character level attentive rnns. In Proceedings of The 12th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT, pages 613–621.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python. O’Reilly Media,
Inc., 1st edition.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko Bošnjak, and Sebastian Riedel. 2016. emoji2vec:
Learning emoji representations from their description. In Proceedings of The Fourth International Workshop
on Natural Language Processing for Social Media, SocialNLP@EMNLP 2016, pages 48–54.

Dan Guo, Wengang Zhou, Houqiang Li, and Meng Wang. 2018. Hierarchical lstm for sign language translation.
In Thirty-Second AAAI Conference on Artificial Intelligence.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput., 9(8):1735–1780,
November.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Victor Makarenkov, Ido Guy, Niva Hazon, Tamar Meisels, Bracha Shapira, and Lior Rokach. 2019. Implicit
dimension identification in user-generated text with lstm networks. Information Processing & Management,
56(5):1880–1893.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

M. F. Porter. 2001. Snowball: A language for stemming algorithms, October.

Murugesan Ramakrishnan, Wlodek Zadrozny, and Narges Tabari. 2019. Uva wahoos at semeval-2019 task 6: Hate
speech identification using ensemble machine learning. In Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 806–811.

Guozheng Rao, Weihang Huang, Zhiyong Feng, and Qiong Cong. 2018. Lstm with sentence representations for
document-level sentiment classification. Neurocomputing, 308:49–57.

Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Marcos Zampieri, and Preslav Nakov. 2020. A large-scale
semi-supervised dataset for offensive language identification.

Abhishek Singh, Eduardo Blanco, and Wei Jin. 2019. Incorporating emoji descriptions improves tweet classifica-
tion. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2096–2101.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–
1958.

Gregor Wiedemann, Eugen Ruppert, Raghav Jindal, and Chris Biemann. 2018. Transfer learning from lda to
bilstm-cnn for offensive language detection in twitter. arXiv preprint arXiv:1811.02906.

Lizhong Xiao, Guangzhong Wang, and Yang Zuo. 2018. Research on patent text classification based on word2vec
and lstm. In Proceedings - 2018 11th International Symposium on Computational Intelligence and Design,
ISCID 2018, volume 1, pages 71–74.

Kaisheng Xu, Hanli Wang, and Pengjie Tang. 2017. Image captioning with deep lstm based on sequential residual.
In 2017 IEEE International Conference on Multimedia and Expo (ICME), pages 361–366. IEEE.



2005

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019. Pre-
dicting the Type and Target of Offensive Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Hamdy Mubarak, Leon
Derczynski, Zeses Pitenis, and Çağrı Çöltekin. 2020. SemEval-2020 Task 12: Multilingual Offensive Language
Identification in Social Media (OffensEval 2020). In Proceedings of SemEval.


