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Abstract 

This paper describes the systems developed for I2C Group to participate on Subtasks A and B in 
English, and Subtask A in Turkish and Arabic in OffensEval (Task 12 of SemEval 2020). In our 
experiments we compare three architectures we have developed, two based on Transformer and 
the other based on classical machine learning algorithms. In this paper, the proposed 
architectures are described, and the results obtained by our systems are presented.  

1 Introduction 

Social media is, currently, one of the most popular mass media. Much of the world's population 
communicates and expresses their opinions through these media. Unfortunately, the use of offensive 
language is very frequent in social networks, having detrimental effects for its users. In (Salminen et al. 
2020), the authors categorize the hate language as abusive language, aggression, cyberbullying, 
hatefulness, insults, personal attacks, provocation, racism, sexism, threats or toxicity. All of them have 
in common the use of offensive language, being a major threat to social media platforms. 

In recent years, automatic detection of offensive language on social media, using machine learning 
algorithms, has aroused great interest among researchers. In (Schmidt and Wiegand 2017), authors 
present a survey on automatic hate speech detection using NLP, and a critical overview on how the 
automatic detection of hate speech in text has evolved over the last years is described in (Fortuna and 
Nunes 2018). The early works related to offensive language detection employing the use of features like 
bag of words, word and character n-grams in conjunction with classical machine learning classifiers 
(Nobata et al. 2016). NLP approaches have the drawback of being dependent on the language used in 
the text so, recently, other machine learning approaches such as neural networks or deep learning are 
being used (Pitsilis, Ramampiaro, and Langseth 2018). 

Most of the researches to detect offensive language focus on the English language. However, there 
are not many studies in other languages. In this sense, the proposal of 2020 edition of OffensEval is very 
novel, also offering corpus labeled in Turkish, Arabic, Danish and Greek. 

In this paper, we present our participation in OffensEval (task 12 of SemEval 2020) as I2C team. We 
focus our efforts on subtasks A and B for English, but we also have worked on Subtask A in Arabic and 
Turkish. 

 
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/. 
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2 Data description and preprocess 

We participated in Subtask A (Offensive language identification) in English, Turkish and Arabic, and in 
Subtask B (Automatic categorization of offense types) in English (Zampieri et al. 2020). 
 
Dataset Subtask A in English. The data set consisted of 9,075,418 file records. Each of file record have 
the following format (Rosenthal et al. 2020): 
 

ID | TWEET | AVG_CONF | CONF_STD 
  

Where ID is the tweet identifier, TWEET is the text of the tweet, AVG_CONF is the average of the 
confidences predicted by several supervised models for this specific instance and CONF_STD is the 
confidence standard deviation for an instance and a corresponding class. 

Since there was no criteria to set the threshold for selecting the tweets with offensive language, and 
based on our experience with other similar corpus, we decided that values of AVG_CONF bigger than 
0.6 should be considered as offensive (1) and not offensive (0) on the opposite case. Using this split, the 
number of tweets with offensive content was 1,042,905 and not offensive 8,032,513 (11% of the tweets 
is offensive as opposed of 89% with not offensive content). Due to the large number of tweets we decided 
to reduce to 20,000 tweets chosen randomly. Different types of files, balanced and imbalanced (keeping 
the percentages to carry out the experiments described in Section 3), were created. Also, we created a 
version of each of these datasets with “clean tweets” where the “#” of each hashtag was removed and 
when the hashtags had words joined by “_”, we divided it into simple words. The “URL” and “@user” 
was removed, but stop words stayed so as to not lose the sentence meaning. Finally, emojis were 
substituted by words that represents the same meaning, using the demojize tool2. 
 
Dataset Subtask B in English. The dataset consisted of 188,974 file records (same Subtask A format) 
(Rosenthal et al. 2020). However, the meaning of AVG_CONF is different (low values meant the tweet 
does not show targeted insult). In this case, AVG_CONF represents tweets with targeted insult (if the 
value is higher than 0.6) or not (if this value es less than 0.6). The number of tweets with targeted insult 
is 17,825 and 171,148 without. It represents 9% and 91% respectively. Also, we decided to reduce to 
data sample to 20,000 file records chosen randomly in two files with data balanced and imbalanced with 
the original percentage. The rest of preprocessing is equals to those in Subtask A. 
 
Dataset Subtask A in Turkish. The Turkish dataset for Subtask A consisted of 31,756 file records with 
the following format (Çöltekin 2020): 
 

ID | INSTANCE | SUBA 
 

Where ID is the tweet identifier, INSTANCE is the text of the tweet, SUBA could be two values: 
NOT (the tweet has no offensive language or profanity) or OFF (the tweet has offensive language or 
profanity). 

We changed the values NOT and OFF by 0 and 1 respectively. The number of tweets labelled as NOT 
was 25,622, while the OFF as 6,134 (81% class NOT, 19% the class OFF). Because there are more tools 
for English language, we tried to translate each tweet to English, but results were not as good as we 
expected so we decided not translate to English and use each tweet in its original language. The rest of 
preprocessing is equal to those in Subtask A in English. 
 
Dataset Subtask A in Arabic. The Arabic dataset consisted of 8,000 file records with the same format 
as dataset subtask in Turkish (Mubarak et al. 2020). We applied the same preprocessing to the subtask 
in Turkish. The class balance is the following, the tweet labelled as NOT is 6,411, while the tweet 
labelled as OFF is 1,589. The percentage is 80% to the class NOT and 20% to the class OFF. 

 
2 https://pypi.org/project/emoji/ 
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3 Methodology and experiments 

For all the subtasks, the methodology behind our approach was oriented to find the best combination of 
algorithms and training dataset to elaborate our models. 

We decided to test BERT (Devlin et al. 2018), RoBERTa (Liu et al. 2019), DistilBERT (Sanh et al. 
2019), ALBERT (Lan et al. 2019), XLM-RoBERTa (Conneau et al. 2019b), Transformer XL (Dai et al. 
2019), XLM (Lample and Conneau 2019), XLMNet (Yang et al. 2019) and XLM-RoBERTa (Conneau 
et al. 2019a) pretrained models from Transformers (Wolf et al. 2019), and some of the classical machine 
learning algorithms: Logistic Regression (H. Wang and F. Hao 2012), SVM (Chang and Lin 2011), 
XGBoost (Chen and Guestrin 2016), RandomForest (Breiman 2001) and K-Neighbours (J. Laaksonen 
and E. Oja 1996) for Subtask A and Subtask B in English and only BERT for Subtask A in Arabic and 
Turkish. 

To obtain the best model for each subtask, 3 architectures were tested. In the first (#Architecture 1), 
each tweet was preprocessed (hashtags, urls, @users, emojis, ... were removed) using the “Bag of Word” 
model with TF-IDF for giving weight to the word. Stop words were also removed and all words were 
transformed to lowercase, and lemmatization was used to reduce the vocabulary of words. In this 
approach, the generated vector is passed as input to the machine learning method. The algorithms applied 
were Lineal Regression, SVM (RBF kernel), XGBoost, RandomForest and K-Neighbors. We added the 
hate words existence on each tweet, lexical characteristics and entities using the spaCy3 tool. The number 
of times that any of these hate words appears in the tweet indicates the weight of the characteristic itself. 
Due to the large number of characteristics, a selection of them was made. To make this selection we used 
a method which eliminates all the characteristics except for the best N of them, where N was 20, 50 and 
100. In our case, the chi2 test was used as selection criterion for the best characteristics. 

For this architecture we used, for all the experiments, balanced and imbalanced datasets with 20,000 
random tweets (training 80%, test 20%). For the balanced dataset, 10,000 random tweets were selected 
from each of the classes in the original file, and for the imbalanced dataset, the same proportion as the 
original files had, that is 89% and 11% for Subtask A, and 91% and 9% for Subtask B. 

The second tested architecture (#Architecture 2) is based on generating the features with a set of 
transformers (Wolf, Debut et al. 2019) and using them to feed the same machine learning methods 
mentioned above (Figure 1). We decided to test the models BERT, TransfomerXL, XLM, XLMNet, 
DistilBERT, RoBERTa y XLM-RoBERTa. We did not use pre-processing, in order to benefit from the 
representation's capabilities of transformers. We tokenized the tweets with a specific tokenizer provided 
by transformer for each model.  

The third approach tested (#Architecture 3) is based only in transformers. We decided to test BERT, 
RoBERTa, DistilBERT, ALBERT and XLM-RoBERTa pretrained models from transformers. Again, we 
did not use pre-processing, in order to benefit from the representation's capabilities of transformers. We 
tokenized the tweets with a specific tokenizer provided by transformer for each model. For the finetuning 
of BERT and others, we used the default parameters of their respective repository but trained on 2 epochs 
and a maximum sequence-length of 128.  

Because the original file was huge and imbalanced, for #Architecture 2 and #Architecture 3 we carried 
out two tests: one with a random data set with the same proportion of tweets of each class as the original 
file supplied by the organizers, and the other with a balanced data set (both datasets with 20,000 tweets) 
and a maximum sequence length of 128, epoch.  

 
3 https://spacy.io/ 
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Figure 1. #Architecture 2. Use of BERT to embed all the tweets and feed machine learning models 

 

 
 

Figure 2. #Architecture 3. Use of transformers to obtain a model 

4 Results 

In this section, we describe the systems developed for the SemEval20 Subtask A in English, Turkish and 
Arabic and Subtask B in English. 

 
Subtasks A and B in English. In first place, the corpus of tweets provided by the organizers was pre-
processed. Using #Architecture 1 described in the previous section, we tested the algorithms Logistic 
Regression, RandomForest, XGBoost, SVM and K-Neighbours. Results are shown in Tables 1, 2, 3 and 
4 (best result marked in bold).  

 
 F1-score 

Model #20  #50 #100 
Logistic Regression 0.80 0.81 0.85 
Random Forest 0.78 0.79 0.82 
XGB 0.76 0.76 0.76 
SVM 0.82 0.83 0.85 
K-Neighbours 0.76 0.76 0.77 

Table 1. Results for Subtask A using TF-IDF Imbalanced Data 
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 F1-score 
Model #20  #50   #100 

Logistic Regression 0.82 0.82 0.83 
Random Forest 0.80 0.81 0.84 
XGB 0.77 0.78 0.78 
SVM 0.79 0.82 0.83 
K-Neighbours 0.77 0.77 0.78 

Table 2. Results for Subtask A using TF-IDF Balanced Data 
 
 

 F1-score 
Model #20  #50 #100 

Logistic Regression 0.74 0.74 0.73 
Random Forest 0.80 0.77 0.71 
XGB 0.80 0.70 0.61 
SVM 0.71 0.70 0.66 
K-Neighbours 0.79 0.73 0.67 

Table 3. Results for Subtask B using TF-IDF Imbalanced Data 
 
 

 F1-score 
Model #20  #50 #100 

Logistic Regression 0.70 0.74 0.76 
Random Forest 0.80 0.80 0.78 
XGB 0.80 0.80 0.77 
SVM 0.70 0.73 0.77 
K-Neighbours 0.81 0.79 0.75 

Table 4. Results for Subtask B using TF-IDF Balanced Data 
 

 
Before testing #Architecture 2, we decided to test how transformers behave with balanced and 

imbalanced datasets. In the same way as #Architecture 1, two datasets of 20,000 tweets each were built. 
For the balanced dataset, 10,000 tweets from each class were randomly selected, and for the imbalanced 
dataset, we selected 20,000 tweets with the same ratio of classes as the initial dataset. 

The results are shown in Table 5 for Subtask A in English and Table 6 for Subtask B. For both subtasks, 
as it was expected, balanced dataset performed, on the whole, the best results.  
 

 #Architecture 3 
#Architecture 2 

Logistic Regression 
 F1-score F1-score 

Model (Pretrained Model) 
Balanced 
Dataset  

Imbalanced 
Dataset  

Balanced 
Dataset  

Imbalanced 
Dataset  

BERT (bert-base-uncased) 0.96 0.92 0.84 0.74 
XLM (xlm-mlm-tlm-xnli15-1024) 0.33 0.47 0.67 0.70 
RoBERTa (roberta-base) 0.33 0.47 0.73 0.47 
ALBERT (albert-base-v1) 0.91 0.89 - - 
DistilBERT (distilbert-base-cased) 0.95 0.92 0.83 0.72 

Table 5. Sampling Results for Subtask A (English) 
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#Architecture 3 

#Architecture 2 
Logistic Regression 

 F1-score F1-score 

Model (Pretrained Model) 
Balanced 
Dataset 

Imbalanced 
Dataset 

Balanced 
Dataset 

Imbalanced 
Dataset 

BERT (bert-base-uncased) 0.88 0.57 0.79 0.59 
XLM (xlm-mlm-tlm-xnli15-1024) 0.33 0.47 0.69 0.70 
RoBERTa (roberta-base) 0.34 0.65 0.64 0.48 
ALBERT (albert-base-v1) 0.86 0.72 - 0.61 
DistilBERT (distilbert-base-cased) 0.88 0.75 0.77 0.54 

Table 6. Sampling Results for Subtask B (English) 
 

Values of 0.33 and 0.34 were obtained when the model classified all the instances as belonging to 
only one class.  

Using a balanced dataset, we decided to fine-tune the pretrained models showed in tables 5 and 6 for 
Subtasks A and B in English respectively. Best results were performed by bert-base-uncased and 
distiltbert-base-cased pretrained models. Our approach for Subtasks A and B in English is based on bert-
base-uncased fine-tuned with a 20,000 random tweets dataset without cleaning phase.  

Results for balanced training dataset for #Architecture2 are shown in Tables 7 and 8. 
 

 F1-score 
Model (Pretrained Model) Logistic 

Regression 
Random 
Forest 

XGB SVM 
K-

Neighbours 
BERT (bert-base-case) 0.79 0.66 0.72 0.72 0.60 
BERT (bert-base-uncased) 0.84 0.72 0.77 0.77 0.62 
XLM (xlm-mlm-tlm-xnli15-1024) 0.67 0.63 0.64 0.70 0.57 
RoBERTa (roberta-base) 0.73 0.72 0.78 0.33 0.63 
DistilBERT (distilbert-base-cased) 0.83 0.74 0.77 0.65 0.59 
XLNet (xlnet-base-cased) 0.83 0.76 0.79 0.76 0.66 
XLMRoBERTa (xlm-roberta-base) 0.58 0.59 0.63 0.33 0.54 

Table 7. Results for Subtask A in English using #Architecture 2 
 

 F1-score 
Model (Pretrained Model) Logistic 

Regression 
Random 
Forest 

XGB SVM 
K-

Neighbours 
BERT (bert-base-case) 0.75 0.66 0.69 0.67 0.61 
BERT (bert-base-uncased) 0.79 0.71 0.75 0.73 0.66 
XLM (xlm-mlm-tlm-xnli15-1024) 0.69 0.64 0.66 0.70 0.60 
RoBERTa (roberta-base) 0.64 0.70 0.75 0.34 0.64 
DistilBERT (distilbert-base-cased) 0.77 0.70 0.75 0.68 0.65 
XLNet (xlnet-base-cased) 0.68 0.64 0.68 0.65 0.56 
XLMRoBERTa (xlm-roberta-base) 0.60 0.61 0.61 0.51 0.55 

Table 8. Results for Subtask B in English using #Architecture 2 
 
In Tables 9 and the results for Subtasks A and B in English using #Architecture 3 are shown. For these 

experiments, several pretrained models were tested for some of the models. 
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Model Pretrained model F1-score 

BERT 

bert-base-uncased 0.96 
bert-large-uncased 0.33 
bert-base-cased 0.96 
bert-large-uncased-whole-word-masking 0.34 
bert-large-uncased-whole-word-masking-finetuned-squad 0.96 

ALBERT 

albert-base-v1 0.91 
albert-large-v1 0.34 
albert-xlarge-v1 0.34 
albert-xxlarge-v1 0.33 
albert-large-v2 0.96 
albert-xlarge-v2 0.33 
albert-xxlarge-v2 0.33 

RoBERTa 
distilroberta-base 0.95 
roberta-base 0.33 

DistilBERT distilbert-base-cased 0.95 
XLM xlm-mlm-tlm-xnli15-1024 0.33 

Table 9. F1-score results (Subtask A - English) 
 
 

Model Pretrained model F1-score 

ALBERT 

albert-base-v1 0.86 
albert-large-v1 0.86 
albert-xlarge-v1 0.34 
albert-xxlarge-v1 0.33 
albert-large-v2 0.61 
albert-xlarge-v2 0.33 
albert-xxlarge-v2 0.33 

BERT 

bert-base-uncased 0.88 
bert-large-uncased 0.33 
bert-base-cased 0.87 
bert-large-uncased-whole-word-masking 0.34 
bert-large-uncased-whole-word-masking-finetuned-squad 0.87 

RoBERTa 
distilroberta-base 0.86 
roberta-base 0.34 

DistilBERT distilbert-base-cased 0.88 
XLM xlm-mlm-tlm-xnli15-1024 0.33 

Table 10. F1-score results (Subtask B - English) 
 
 
Subtask A in Turkish. Taken into account the results obtained with transformers for Subtask A in 
English, for this subtask, it was decided to test only BERT multilingual-cased pretrained model. File 
supplied by the organization was imbalanced and the number of instances of the minority class required 
a prior study regarding the need for sampling. Several sampling techniques were tested as it is shown in 
Table 11 and the most appropriate was Smote-Tomek approach. For these tests, train and test files were 
obtained randomly from the 85% and 15% of the original file. Our approach to Subtask A in Turkish 
was to fine tune bert-multilingual pretrained model with the full dataset previously sampled by Smote-
Tomek. 
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Sampling Technique F1-score 
No sampling 0.77  
Under sampling majority class 0.75 
K-neighbors 0.91  
Oversampling minority class 0.90 
Smote 0.92 
Table 11. Results for Subtask A (Turkish) 

 
 

Subtask A in Arabic.  For this task, it was decided to test only BERT multilingual-cased pretrained 
model. Again, file supplied was imbalanced. Due to the number of files of the minority class, the original 
file was divided into train (85%) and test (15%) and several tests were carried out to find out which 
technique was best suited to the multilingual BERT pretrained model. As it can be seen in Table 12, 
Smote-Tomek approach reached the best results so we fine tune the multilingual BERT pretrained model 
with balanced Smote-Tomek dataset obtained from the full dataset supplied by the organization. We also 
tried to translate each tweet into English, but the results did not improve. Results are shown in Table 12. 
 
 

Sampling Technique F1-score 
No sampling 0.82 
Under sampling majority class 0.74 
K-neighbors 0.92 
Oversampling minority class 0.92 
Smote 0.93 
Table 12. Results for Subtask A (Arabic) 

 
Finally, Table 13 shows the results obtained in the competition for the I2C team (best result in the 

competition raking for each subtask is shown in brackets). 
 

 
Subtask F1-score 

English A 0.8919 (0.9222) 
English B 0.6011 (0.7461) 
Turkish 0.7735 (0.8257) 
Arabic 0.8055 (0.9017) 

Table 13. Best Results 
 

5 Conclusions 

In this paper, we have presented I2C's contribution to SemEval20 for Subtasks A in English, Arabic and 
Turkish and Subtask B in English. In order to achieve optimal results in the challenge suggested by the 
organization, three architectures were developed and tested: the first one was based on classical machine 
learning methods for text classification tasks, the second used a mixed architecture for features 
generation to embed all the tweets and feed machine learning classical models, and in the last one we 
fine-tuned a set of pretrained models from transformers to classify the tweets. Among the three 
architectures, the one based on transformers only obtained the best results, in particular, by BERT using 
the bert-base-uncased pretrained model for the two tasks in English, and BERT using the bert-base-
multilingual pretrained model for tasks in Arabic and Turkish. We consider that more research should 
be put into multilingual solutions. Our experiments were done using the default parameters so there is 
room for improvement with many adjustments that we plan to consider for future works. 
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