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Abstract

In this paper, we describe the team BRUMS entry to OffensEval 2: Multilingual Offensive
Language Identification in Social Media in SemEval-2020. The OffensEval organizers provided
participants with annotated datasets containing posts from social media in Arabic, Danish, English,
Greek and Turkish. We present a multilingual deep learning model to identify offensive language
in social media. Overall, the approach achieves acceptable evaluation scores, while maintaining
flexibility between languages.

1 Introduction

Social media has become a normal medium of communication for people these days as it provides the
convenience of sending messages fast from a variety of devices. Unfortunately, social networks also
provide the means for distributing abusive and aggressive content. Given the amount of information
generated every day on social media, it is not possible for humans to identify and remove such messages
manually, instead it is necessary to employ automatic methods. As offensive language becomes pervasive
in social media, scholars and companies have been working on developing systems capable of identifying
offensive posts, which can be set aside for human moderation or permanently deleted (Risch and Krestel,
2018).

Along with these studies, a few shared tasks have been organized on detecting offense in social media,
such as HatEval (Basile et al., 2019), HASOC (Mandl et al., 2019), TRAC (Kumar et al., 2018) and
OffensEval (Zampieri et al., 2019b) co-located with SemEval 2019. In semeval 2020, OffensEval returns
for the second time with multilingual offensive language identification in social media. OffensEval 2
focuses on several languages Arabic, Danish, English, Greek and Turkish motivating participants to
submit multilingual offensive language identification systems.

This paper revisits the problem of offensive language identification describing our submission to the
SemEval-2020 Task 1 (Zampieri et al., 2020). The remainder of this paper is structured as follows: Section
2 describes the related work done in the field of aggression detection, Section 3 has a description of the
dataset. Section 4 describes the system that was submitted, split into a description of how the data was
processed and the architectures of the classifiers that were used. Section 5 presents an analysis of the
results of our evaluation of the different architectures, as well as of the final submission. Finally, Section
6 offers some final remarks and a conclusion.

2 Relevant Work

The majority of text classification approaches in early research work were supported by traditional or
feature-based supervised learning methods. Following this tradition, Malmasi and Zampieri (2017)
proposed a linear Support Vector Machine (SVM) classifier for hate speech detection in social media.
The best accuracy of this approach was obtained by using character n-grams as model features. Another
research suggested stacked ensemble system using logistic regression and random forest-based classifiers
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(Montani, 2018). For initial layer of classifiers, they used character n-grams, token n-grams, important
tokens and word2vec embeddings. The Outputs of initial layer classifiers were used as the inputs of next
classifier layer which produces the final result. This approach obtained the best results in GermEval 2018
(Wiegand et al., 2018) by outperforming the deep neural network (DNN) models such as convolutional
neural networks (CNN) (von Griinigen et al., 2018) and combination of bi-directional Long-Short term
memory and CNN (BiLSTM-CNN) (Wiedemann et al., 2018).

However, most of the recent research conducted in this area prove that DNN-based methods can
outperform traditional supervised learning methods (Zampieri et al., 2019a; Modha et al., 2018). But,
unlike the traditional methods, DNNs require sufficient amount of training data to adjust their weights
properly without overfitting. Focusing on this issue, Modha et al. (2018) found that LSTM with higher
dropout (= 0.5) can handle overfitting problem. In order to increase the model performance using a
high number of training instances in a simple manner, the available data sets related to aggression and
cyberbullying detection can be merged (Fortuna et al., 2018). But, when focused on a particular area, it
cannot guarantee the availability of multiple data sets. Another research suggested data augmentation and
pseudo labelling approaches to increase the amount of training data (Aroyehun and Gelbukh, 2018). As
the data augmentation strategy, they proposed to translate each instance into an intermediate language
and back to the original language. For pseudo labelling approach, they trained some initial models using
available training data and picked the best model to label new data. A LSTM model trained using the
augmented data set received the first place in Trolling, Aggression and Cyberbullying (TRAC-2018)
shared task designed for Facebook English data set. In the same shared task, for the platform unnamed
English data set, third place could be obtained by a CNN-LSTM model trained using the combination of
augmented and pseudo labelled data sets.

In addition to approaching data set increasing methods, transfer learning techniques also used by
previous research to overcome the data limitation issue. Wiedemann et al. (2018) showed that transfer
learning can be applied using some labelled data set with relevant labels or unlabelled data set with
unsupervised user clusters or topics. Further, as mentioned in SemEval-2019 OffensEval leader-board, the
top 5 solutions for offensive language identification are BERT-based and they proved the effectiveness in
transfer learning as well as Transformers (Zampieri et al., 2019b). The top solution of this shared task
fined tuned a BERT model using the training data and found that it outperforms a LSTM model with
higher dropout (Liu et al., 2019a).

In summary, majority of recent research in this area were supported by DNN models and among them,
CNN, LSTM and BERT-based models were found to be most effective and commonly used. When focused
on the input data representation, there was a tendency to use fastText embeddings to handle the high
availability of spelling mistakes and new words in social media (Aroyehun and Gelbukh, 2018; Modha et
al., 2018; Wiedemann et al., 2018; Zampieri et al., 2019a). Following this tendency, in this research, we
further experimented the effectiveness of DNN models including some recently published transformers
for offensive language identification.

3 Dataset

OffensEval 2020, the SemEval 2020 Offensive Language Detection Shared Task, does not provide a new
manually labeled training set for the English language (Zampieri et al., 2020). The competitors were
recommended to use the Offensive Language Identification Dataset (OLID) which was released for the
the SemEval 2019 Oftensive Language Detection Shared Task (Zampieri et al., 2019b). The OLID is a
hierarchical dataset to identify the type and the target of offensive texts in social media. The dataset is
collected on Twitter and publicly available. There are 14,100 tweets in total, in which 13,240 are in the
training set, and 860 are in the test set. For each tweet,there are three levels of labels:(A) Offensive/Not-
Offensive, (B) Targeted-Insult/Untargeted, (C) Indi-vidual/Group/Other. For English subtask organisers
provided an additional dataset similar to OLID (Zampieri et al., 2019b), it still has three levels, but this
time only confidence scores, generated by different models, are provided rather than human annotated
labels. In addition, the data in level A is separated from levels B and C. In level A, there are 9,089,140
tweets,in levels B and C, there are different 188,973 tweets.
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Language | training | dev | test
Arabic 7000 | 1000 | 2000

Danish 2961 - 330
Greek 8744 - 1545
Turkish 31757 - 3529

Table 1: Number of rows in Training set(training), Development set(dev) and Test set(test) in each
language. - denotes that no data was available.

For non-English languages the organisers released Multilingual Offensive Language Identification
Dataset (MOLID). It contains four languages: Arabic (Mubarak et al., 2020), Danish (Sigurbergsson
and Derczynski, 2020), Greek (Pitenis et al., 2020), and Turkish (Coltekin, 2020). Table 1 contains
information about number of rows that the training, dev and test datasets had in each language (Zampieri
et al., 2020).

4 Methodology

In this section we present the methodology employed for the shared task. All the languages followed a
common methodology which had two steps: Data Preprocessing and Machine Learning.

4.1 Data Preprocessing

As mentioned previously, the data preprocessing for this task was kept fairly minimal to make it portable
for all the languages. More specifically, we perform only four specialised tasks for this data, followed by
tokenisation. The tasks include removing usernames, removing URLs, converting all the emojis to text
and converting all tokens to lower case.

First, we completely remove all usernames from the tweets, without inserting a placeholder. In the
SemEval-2020 dataset, mention of a certain user is represented by @ USER. We removed all strings
containing @ USER using a regular expression. The reasoning behind this step is mainly to remove noisy
text. Then we remove all URL mentions in the tweets. In the SemEval-2020 dataset, mention of a certain
URL is represented by URL. We removed all strings containing URL using a regular expression. The
reasoning behind this step too is mainly to remove noisy text. Emojis play an important role in showing
aggression in social media (Hettiarachchi and Ranasinghe, 2019). Since we can’t guarantee that the
pretrained embedding models we use will have embeddings for emjois, we converted all the emojis to
text using a third party python library named Emoji !. We only conducted this step for English, since the
Emoji library does not support other languages.

For Arabic language, we used a separate preprocessing step. Twitter users writing in Arabic can either
write in Modern Standard Arabic (MSA) or in their particular dialects. If the tweet is written in MSA,
it may or may not include diacritics whereas dialectical Arabic does not include any. Offensive tweets
can be formulated in any of these different versions of the Arabic transcript. Thus, in order to avoid false
classifications due to a non-defining feature, we used regular expressions to delete diacritics.

Final prepossessing step is only applied to the architectures that used character embeddings. The fastText
pretrained character embedding models that we used only contain lower-cased letters. Therefore, we
convert the text to lower case letters. However, for the Transformer architecture, we did this preprocessing
step only if the model that we used is uncased.

4.2 Machine Learning

In order to determine the most suitable neural network architecture for the task, we experimented with
three different neural architectures: Convolutional Neural Network (CNN) (Kim, 2014), Recurrent Neural
Network (RNN) (Cui et al., 2018) and Transformer (Devlin et al., 2018).

'https://github.com/carpedm20/emoji/
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4.2.1 Convolutional Neural Network (CNN)

CNN is a class of deep, feed-forward artificial neural networks that uses a variation of multilayer
perceptrons (Kim, 2014). CNNs are generally used in computer vision, however they have recently been
applied to various NLP tasks and the results were promising (Kim, 2014; Hughes et al., 2017). In a CNN
result of each convolution will fire when a special pattern is detected. By varying the size of the kernels
and concatenating their outputs, we can detect patterns of multiples sizes (2, 3, or 5 adjacent words) (Kim,
2014). Patterns could be expressions like “fuck it”, “stupid cunt” and CNNs can identify them in the
sentence regardless of their position. Since offense is mostly a word pattern, we assumed that CNNs
would be a good architecture to detect offensive sentences.

For this architecture we used fasttext character embeddings (Bojanowski et al., 2016). After the
embedding layer we used four convolution layers with 1,2,3 and kernal sizes followed by a max pooling
layer, (Scherer et al., 2010). Finally the outputs of the max pooling layers were concatenated and passed
through a linear layer. For all the languages in the task, we used fasttext character embeddings released by
facebook (Grave et al., 2018) 2.

4.2.2 Recurrent Neural Network (RNN)

RNNss are designed to make use of sequential data, when the current step has some kind of relation with
the previous steps. (Cui et al., 2018). This makes them ideal for applications with a time component
(audio, time-series data) and natural language processing (Pitenis et al., 2020). RNNs perform very
well for applications where sequential information is clearly important, because the meaning could be
misinterpreted if sequential information is not used. Since sequential information is important to identify
offensive sentences, we used the RNN architecture for this task. For this architecture too we used fasttext
character embeddings (Bojanowski et al., 2016) trained on English Wikipedia text. After the embedding
layer we used a RNN layer. We experimented with LSTM (Hochreiter and Schmidhuber, 1997), bi-
directional LSTM (Graves et al., 2005), GRU (Chung et al., 2014) and bi-directional GRU (Chung et al.,
2014). The output of the RNN layer was followed a linear layer finally. For this architecture also we used
fasttext character embeddings released by facebook.

4.2.3 Transformers

With the introduction of BERT (Devlin et al., 2018) transformer architectures have shown a massive
success in wide range of NLP tasks. Transformer architectures have been trained on general tasks like
language modelling and then fine-tuned for classification tasks. (Sun et al., 2019; Ranasinghe et al., 2019).
Transformer models take an input of a sequence and outputs the representation of the sequence. The
sequence has one or two segments that the first token of the sequence is always [CLS] which contains
the special classification embedding and another special token [SEP] is used for separating segments.
For text classification tasks, Transformer models take the final hidden state h of the first token [CLS] as
the representation of the whole sequence (Sun et al., 2019). A simple softmax classifier is added to the
top of the transformer model to predict the probability of label ¢ as shown in Equation 1 where W is the

task-specific parameter matrix .
p(c/h) = softmax(Wh) (1)

We fine-tuned all the parameters from transformer models as well as W jointly by maximising the
log-probability of the correct label. For English language, there exists many pretrained transformer
models released by Hugging Face®. Therefore, we experimented several transformer architectures like
BERT (Devlin et al., 2018), XLNet (Yang et al., 2019), XLLM (Conneau et al., 2019), RoBERTa (Liu
et al., 2019b) and DistilBERT (Sanh et al., 2019). We used the HuggingFace’s implementation of the
transformer models (Wolf et al., 2019) and the pre-trained models available in the HuggingFace’s model
repository*. However, for non-English languages, Google only provides a single BERT multilinugal
model that supports 104 languages®. DistilBERT also has a multilingual model that supports the same 104

https://fasttext.cc/docs/en/crawl-vectors.html

3https ://huggingface.co

‘nttps://huggingface.co/models
‘https://github.com/google-research/bert/blob/master/multilingual.md
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languages that multilingual BERT supports. We used these two models for all the non-English languages.
To experiment more, we also experimented several community built transformer models.

For Arabic, other than the multilingual BERT model and multilingual DistilBERT we used AraBERT
(Antoun et al., 2020) 6. AraBERT is an Arabic pretrained lanaguage model based on Google’s BERT
architechture. The model was trained on 70M sentences or 23GB of Arabic text with 3B words. The
training corpora are a collection of publicly available large scale raw Arabic text (Arabic Wikidumps, The
1.5B words Arabic Corpus (El-Khair, 2016), The OSIAN Corpus (Zeroual et al., 2019), Assafir news
articles, and 4 other manually crawled news websites (Al-Akhbar, Annahar, AL-Ahram, AL-Wafd). There
are two version off the model AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1
uses pre-segmented text where prefixes and suffixes were splitted using the Farasa Segmenter (Abdelali et
al., 2016). We used AraBERTV1 since it performed better from the two models in most of the downstream
NLP tasks (Antoun et al., 2020).

For Danish language, we used Danish-BERT 7, a Danish pretrained language model based on BERT
architecture. The Danish corpus used to train the Danish-BERT was compiled by combining multiple
sources: All Danish language text from Common Crawl, The Danish Wikipedia, Custom scraped data
from the two biggest Danish debate forums (dindebat.dk and hestenettet.dk) and Danish OpenSubtitles.

We used GreekBERT? for Greek Language. This model too has been trained on combining multiple text
sources: Greek Wikidumps, Greek part of European Parliament Proceedings Parallel Corpus and Greek
language text from OSCAR (Ortiz Sudrez et al., 2019), a cleansed version of Common Crawl.Common
Crawl. Unlike the transformer models we used for other languages GreekBERT is uncased. Therefore, we
had to convert all tokens to lowercase before feeding them to the model.

For Turkish we used BERTurk” which is also based on the BERT architecture. The current version
of the model was trained on a filtered and sentence segmented version of the Turkish OSCAR corpus
(Ortiz Suarez et al., 2019), a recent Wikipedia dump and various OPUS corpora (Tiedemann, 2012).

5 Results

In this section we present the evaluation results that were obtained during testing for each language. We
also provide a brief look at the final submission results of the shared task. In all the languages multilingual
DistilBERT does not perform better than multilingual BERT model we used. Therefore, we have omitted
it from the results.

5.1 Arabic

For Arabic language, we trained our system on the training set and evaluated the system on development
data that the organisers provided. Table 2 shows the results we obtained for the development set. As
shown Transformer models outperform traditional word embedding models. Also it should be noted that
AraBERT slightly outperformed multilingual BERT. On the test set our system achieved 0.788 macro F1
score and ranked 41* out of 53 teams.

Not Offensive Offensive Weighted Average
Model P R F1 P R F1 P R F1 | F1 Macro
CNN 0.80 0.82 0.81]0.71 0.66 0.69 | 082 0.82 0.78 0.70
RNN-BILSTM 0.76 0.78 0.77 | 0.67 0.62 0.65|0.78 0.78 0.74 0.66
BERT-multilingual-cased | 0.82 0.84 0.83 | 0.74 0.69 0.72 | 0.86 0.87 0.86 0.77
AraBERT 0.84 086 0.85]0.76 071 0.74 | 0.88 0.89 0.88 0.79

Table 2: Results for English Task For each model, Precision (P), Recall (R), and F1 are reported on all
classes, and weighted averages. Macro-F1 is also listed (best in bold).

*https://github.com/aub-mind/arabert
"https://github.com/botxo/nordic_bert
$https://github.com/nlpaueb/greek-bert
‘https://github.com/stefan—it/turkish-bert
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5.2 Danish

Since the organisers didn’t provide a separate development set for Danish language, we separated 20% of
the training data and treated it as the development set to evaluate the models. Table 3 shows the results. In
Danish language also transformer models outperformed traditional word embedding models. However,
Danish-BERT model could not outperform the BERT Multilingual model. We suspect that this is mainly
due to the fact that Danish-BERT model we used was uncased. For the test data our best system scored
0.656 Macro F1 score ranking 32" out of 39 teams.

Not Offensive Offensive Weighted Average
Model P R F1 P R F1 P R F1 | F1 Macro
CNN 091 092 093|071 0.67 0.67 | 0.85 0.85 0.85 0.72
RNN-BILSTM 090 091 092 |0.70 0.66 0.66 | 0.84 0.84 0.84 0.71
BERT-multilingual-cased | 0.95 096 097 | 0.75 0.75 0.75 093 092 093 0.80
DANISH-BERT 092 093 093 |0.71 0.71 0.71 | 0.89 0.89 0.89 0.76

Table 3: Results for English Task For each model, Precision (P), Recall (R), and F1 are reported on all
classes, and weighted averages. Macro-F1 is also listed (best in bold).

5.3 English

For English language also we separated an evaluation set which was 20% from the training set and
evaluated our models on that. Since there were many pretrained transformer models for English, we were
able to experiment with various transformer architectures. Table 4 shows the results for the evaluation set.
XLNET large cased transformer model outperformed all the other architectures. Our best system scored
0.90056 Macro F1 score for the test set and ranked 62" out of 86 teams.

Not Offensive Offensive Weighted Average
Model P R F1 P R F1 P R F1 | F1 Macro
CNN 0.87 0.88 0.87 |0.81 077 0.77 | 081 0.83 0.82 0.79
RNN-BILSTM 0.86 0.87 0.86|0.80 076 0.76 | 0.80 0.81 0.81 0.77

BERT-large-cased | 091 092 091 | 085 0.81 081|085 0.85 0.86 0.82
XLNet-large-cased | 0.92 093 092 | 0.84 0.83 0.83 | 0.87 0.87 0.88 0.85

Table 4: Results for English Task For each model, Precision (P), Recall (R), and F1 are reported on all
classes, and weighted averages. Macro-F1 is also listed (best in bold).

5.4 Greek

For Greek we prepared a separate evaluation set as we did with Danish and English since the organisers
did not provide a development set. In Greek, GreekBERT performed best outperforming multilingual
BERT model slightly. Table 5 shows the results for the evaluation set. For the test set it had 0.814 Macro
F1 score and ranked 15" out of 37 teams.

Not Offensive Offensive Weighted Average
Model P R F1 P R F1 P R F1 | F1 Macro
CNN 0.81 082 0.83]0.74 075 0.74 | 0.86 0.85 0.84 0.80
RNN-BILSTM 0.80 0.80 0.81|0.73 0.72 0.73 | 0.77 0.77 0.75 0.71
BERT-multilingual-cased | 0.87 0.87 0.88 | 0.79 0.79 0.79 | 0.83 0.83 0.82 0.77
GREEKBERT 0.89 089 090 | 0.81 0.81 081|085 0.85 0.85 0.81

Table 5: Results for Greek subtask For each model, Precision (P), Recall (R), and F1 are reported on all
classes, and weighted averages. Macro-F1 is also listed (best in bold).
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5.5 Turkish

For Turkish also we prepared a separate evaluation set as we did with Danish and English. For Turkish,
the transformer model with BERTURK performed best surpassing BERT multilingual as shown in table 6.
Our best system had 0.7858 Macro F1 score and ranked 7™ out of 46 teams.

Not Offensive Offensive Weighted Average
Model P R F1 | R F1 P R F1 | F1 Macro
CNN 0.80 0.81 0.79 | 0.70 0.59 0.69 | 0.75 0.76 0.75 0.67
RNN-BILSTM 0.79 080 0.78 | 0.69 0.58 0.68 |0.74 0.75 0.74 0.66
BERT-multilingual-cased | 0.83 0.84 0.82 | 0.73 0.62 0.72 | 0.78 0.79 0.78 0.70
BERTURK 092 093 091|082 0.82 081|087 0.88 0.87 0.79

Table 6: Results for Turkish subtask For each model, Precision (P), Recall (R), and F1 are reported on all
classes, and weighted averages. Macro-F1 is also listed (best in bold).

6 Conclusion

In this paper, we have presented the team BRUMS system for identifying offensive language in social
media posts in Arabic, Danish,English, Greek and Turkish. The system uses minimal preprocessing,
and relies on word and context embeddings. We experimented with different deep neural network
architectures in order to determine the most suitable for this task. Our implementation has been made
available on Github.!?. According to our evaluation, and the results provided by the task organisers, it is
clear that fine tuning transformer architectures score highest overall. Also we discovered that pretrained
monolingual transformer models perform better than the bert-multilingual model. In future, we are hoping
to experiment more with transformer architectures in different languages.
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