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Abstract

This paper describes a method and system to solve the problem of detecting offensive language
in social media using anti-adversarial features. Our submission to the SemEval-2020 task 12
challenge was generated by an stacked ensemble of neural networks fine-tuned on the OLID
dataset and additional external sources. For Task-A (English), text normalisation filters were
applied at both graphical and lexical level. The normalisation step effectively mitigates not only
the natural presence of lexical variants but also intentional attempts to bypass moderation by
introducing out of vocabulary words. Our approach provides strong F1 scores for both 2020
(0.9134) and 2019 (0.8258) challenges.

1 Introduction

Keeping social media platforms free from unwanted publications such as spam, scam, phishing, hate
speech, targeted attacks and fake news is still an active research topic nowadays. This is due not only
to the relative low cost of creating fake accounts, bots (Albadi et al., 2019) and forging online identi-
ties but also to the large amount of personal information made available on the Internet which makes
targeting certain groups and individuals easier than ever. While some of these threats were seen before
affecting traditional messaging platforms such as email and SMS, the reach and adoption of social media
applications have amplified their impact, requiring additional cost and effort to mitigate.

The use of offensive language as a vehicle to attack individuals and communities poses challenges
not only for humans, which are prone to subjective and biased judgement (Sap et al., 2019) but also for
automatic moderation systems. The inherent ambiguity when dealing with messages which are often
short, can be written in mixed languages, contain informal words and are usually subject to adversarial
modifications render naive filtering approaches such as word lists or re-purposed spam detection models
ineffective. For this reason, in order to solve this problem more sophisticated approaches such as state of
the art natural language processing (NLP) is needed.

In order to keep track and measure the progress in the area on offensive language detection several
English datasets with annotations for hate (Davidson et al., 2017), (Waseem and Hovy, 2016), targeted
(Zampieri et al., 2019a) and personal attacks (Wulczyn et al., 2016) were released over the last years.
Likewise, public evaluations such as HatEval (Basile et al., 2019) and OffenseEval (Zampieri et al.,
2019b) were recently introduced highlighting the need for stronger baselines to assess the performance
of more complex systems.

This paper evaluates the method and system submitted to the shared task 12 of SemEval-2020: Mul-
tilingual Offensive Language Identification in Social Media (Zampieri et al., 2020) for the subtask A
(English) based on an stacked ensemble of neural networks. The rest of the document is organised as
follows: In section 2, we review related work relevant for detecting abusive language. In Section 3 we
describe our layered model approach including our anti-adversarial strategy based on text normalisation
and stacking-based ensembling. In Section 4 we show the results obtained in the test and evaluation
datasets. Finally, in Section 5 we draw our conclusions and outline future work.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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2 Related Work

Previous work on automatic hate speech and offensive language detection made use of linear models
over word n-grams (Malmasi and Zampieri, 2017) and sentiment lexicons (Davidson et al., 2017). How-
ever most recent research is dominated by netural network architectures: Liu et al. (2019) and Zhu et
al. (2019) applied bidirectional transformers (BERT) (Devlin et al., 2018) with success showing that
pre-trained models fine-tuned for this task can outperform other approaches. On the other hand, convo-
lutional neural networks (CNN) and bidirectional LSTMs (bi-LSTMs) provided strong results (Mahata
et al., 2019) when paired with pre-trained embeddings such as FastText (Bojanowski et al., 2017), GloVe
(Pennington et al., 2014) or word2vec (Mikolov et al., 2013).

While adding more complexity, combining several models can effectively reduce classification bias
and variance. We have seen good results using voting ensembles (Seganti et al., 2019) and stacked
generalisation (Malmasi and Zampieri, 2018) when applied to this particular problem.

3 Methodology

The goal of Subtask-A is determining if a tweet is either offensive or not offensive, which conceptually
translates to a binary classifier using F1-macro as scoring function. However, during the exploratory
data analysis of the training set we’ve identified group of instances where users intentionally crafted
offensive messages to bypass profanity and moderation filters. For this reason, our design choices have
an anti-adversarial strategy in mind.

Best performing models in previous benchmarks (Basile et al., 2019), (Zampieri et al., 2019b) were
based on popular pre-trained embeddings and architectures, either using transfer learning or leveraging
these directly. While this is quite convenient in terms of computing cost it also introduces potential
weaknesses which can be exploited in a black-box scenario. By guessing the base architecture the model
was built upon, since there is a reduced set of high-quality pretrained models, an attacker could launch
more successful black-box attacks (Wang et al., 2018). This is usually performed via input perturbation
such as introducing synonyms (Jin et al., 2019), flipping characters (Pruthi et al., 2019) or including
targeted keywords and typos (Shi et al., 2020). Being even possible to steal the whole model altogether
(Krishna et al., 2019) in more sophisticated attacks.

3.1 Text Normalisation

Lexical normalisation techniques are particularly effective against black-box adversarial attacks (Alshe-
mali and Kalita, 2019), while they also can increase the performance of NLP tools and applications when
working with informal text (Mosquera and Moreda, 2013).

For this reason, we have applied to some of our inputs a text normalisation filter in order to reduce
out-of-vocabulary words (OOV). This is not only effective against some adversarial perturbations but
also replaces common typos and informal lexical variants commonly found in microblogs with their
canonical version. This is performed at 2 levels: lexical and graphical. At lexical level we follow
a similar modular architecture as TENOR (Mosquera et al., 2012) where a high-precision, low recall
normalization dictionary is recursively combined with shortening/lengthening and re-casing rules. See
table 1. Likewise, unicode homographs and near-homographs are translated to their ASCII equivalent by
using a lookup table. See last entry in table 1.

Original Normalised

Then these dumba$$es vote Democrat!?!!! then these dumb asses vote democrat
@USER Again another b******* gtory no one is | again another bullshit story no one is
watching football because of this a****** watching football because of this asshole
theyre abso shite quality tho they are absolute shit quality though

Gets Period* You are the cause of my 4¥sp#foria | oets period you are the cause of my dysphoria

Table 1: Text fragments where after normalisation a label flip was observed during validation.
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3.2 Ensembling

Aiming to minimize the impact of adversarial attacks targeting popular models we have designed a 2-
level classifier based on stacked generalisation as shown in Figure 1.

- Classifier 1
- with

i Parameters
- 81

s
MY
w
38
E3T| >
57 ¢
- -y
©
S
Cr
First Level Second Level

Base Classifiers Meta Classifier

Final
Decision

Figure 1: Stacked generalisation. Image reproduced from Polikar (2006)

The first level (L1) comprises of 42 models trained over several lexical resources using the OLID
(Zampieri et al., 2019a) dataset and labels. This effectively encapsulates different models and train-
ing datasets, having more chances to thwart off-the-shelf attacks for specific architectures. Details of
individual models and datasets for level 1 at can be found at Table 2.

At the second level (L2) there is a LightGBM (Ke et al., 2017) binary classifier trained over 55 boosting
rounds with binary logarithmic loss. These and other model hyper-parameters were tuned against the
OffenseEval 2019 evaluation set. The most important level-1 features of the final model considering
both split count and gain can be seen at Figure 2. From there we can observe that both BERT (toxic,
toxicnorm), and GloVe-based (capsuleglove, cnnglove) neural networks are clearly the strongest models

in the ensemble.
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Level 1 model

Description

Training labels

capsuleglove

cnnglove
delft.*

normaliseddelft.*

bert.*

normalisedbert.*

vader
normalisedvader
flair

normalisedflair
gcount
emoji_max_max

Capsule network (CapsNet) + GloVe. CapsNets (Sabour
et al., 2017) have been shown as an alternative to
Convolutional Neural Networks (CNNs) but more ro-
bust against white-box adversarial attacks (Frosst et al.,
2018). CapsNets have been also seen outperforming
CNNss in offensive text identification (Hettiarachchi and
Ranasinghe, 2019)

CNN + GloVe

GRU + FastText. The multi-class toxicity classifier
from DeLFT ! is leveraged to provide 6 inputs (delfti-
dentity_hate, delftinsult, delftobscene, delftsevere_toxic,
delftthreat and delfttoxic)

GRU + FastText + text normalisation produces 6 inputs
(normaliseddelftidentity_hate, normaliseddelftinsult,
normaliseddelftobscene,  normaliseddelftsevere_toxic,
normaliseddelftthreat and normaliseddelfttoxic)

BERT finetuned provides 6 inputs (toxic, severe_toxic,
obscene, threat, insult and identity_hate)

BERT + text normalisation provides 6 inputs (toxicnorm,
severe_toxicnorm, obscenenorm, threatnorm, insultnorm
and identity _hatenorm)

VADER (Hutto and Gilbert, 2014) polarity score
VADER polarity score after text normalisation
Recurrent Neural Network (RNN) sentiment classifier
based on Flair (Akbik et al., 2019)

RNN-Flair sentiment score applied to normalised text
Number of question marks

Emoji offensive priors extracted from (Rosenthal et al.,
2020). Only the highest offensive score (in case more
than emoji appears in a message) of the maximum offen-
sive score per emoji is considered

OLID

OLID
Wikipedia Toxic 2

Wikipedia Toxic

Wikipedia Toxic

Wikipedia Toxic

Unsupervised
Unsupervised
IMDB (Maas et
al., 2011)

IMDB
Unsupervised
OffensEval 2020

charhasoc Character n-gram (3-6) + logistic regression HASOC (Mandl
et al., 2019)
chartrac Character n-gram (3-6) + logistic regression TRAC (Kumar et
al., 2018)
hateval.* Word n-gram (1-3) + logistic regression over the 3 differ- | HatEval (Basile et
ent labels, providing wordhate, wordtarget and wordag | al., 2019)
inputs for hate spech, targeted attack and aggression re-
spectively at word level. The same were also trained
at characted level (3-6), resulting the another 3 inputs (
charhate, chartarget and charag)
charinsult Character n-gram (3-6) + logistic regression Kaggle insults
Table 2: Summary of models and inputs.
4 Results

Our offensive text classification system obtained strong results across different datasets which are sum-
marized in Table 3: It ranked 10th/82 at SemEval 2020 task 12/subtask A and (virtually) 2nd/104 against

SemEval 2019 task 6/subtask A test set, which wasn’t used as part of training nor validation.
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System Task F1-macro
Ituhh2020 (best) SemEval 2020 task 12 - subtask A | 0.92226
L1 - toxic SemEval 2020 task 12 - subtask A | 0.91389
L1 - delftidentity_hate SemEval 2020 task 12 - subtask A | 0.913775
L2 -LGB SemEval 2020 task 12 - subtask A | 0.91348
L1 - toxicnorm SemEval 2020 task 12 - subtask A | 0.913211
L1 - normaliseddelftidentity_hate | SemEval 2020 task 12 - subtask A | 0.912979
L1 - capsuleglove SemEval 2020 task 12 - subtask A | 0.908493
L1 - cnnglove SemEval 2020 task 12 - subtask A | 0.907237
NULI (best) SemEval 2019 task 6 - subtask A | 0.829
L2-1LGB SemEval 2019 task 6 - subtask A | 0.825815
L1 - cnnglove SemEval 2019 task 6 - subtask A | 0.800309
L1 - capsuleglove SemEval 2019 task 6 - subtask A | 0.787704
L1 - toxicnorm SemEval 2019 task 6 - subtask A | 0.767035
L1 - normaliseddelftidentity_hate | SemEval 2019 task 6 - subtask A | 0.764185
L1 - toxic SemEval 2019 task 6 - subtask A | 0.762993
L1 - delftidentity_hate SemEval 2019 task 6 - subtask A | 0.734854

Table 3:

approach for each task.

Results of individual models (L.1) and the final ensemble (L2) versus the best public scoring

Interestingly, BERT models fine tuned on Kaggle toxic dataset had a high correlation with the test
set for this year challenge, even improving slightly final ensemble results when compared against the
identity hate and toxic classes. Such correlation is not present in the previous year test set, where models
trained on OLID outperformed the rest by a considerable margin.

There is another apparent trend reversal observed in normalised models, on the 2019 test set individual
models with normalisation outperformed their non-normalised equivalent while in the current test set
results were comparable for both normalised and not normalised.

Labelling shifts of certain keywords that caused the system to FP may be worth of further analysis:
79% of the tweets containing the pattern “sick|disgusting|sucks” were labelled as offensive in OLID, in
comparison with a 55% when considering test set gold labels. Some examples of this disagreement can
be found at Table 4.

Tweet Dataset | Label
@USER That sucks {thumbs down} OLID | OFF
@USER The game sucks OLID OFF
@USER man that sucks unreal OLID OFF
@USER Oh god, that sucks :/ Test NOT
ldr doesn’t really works it sucks Test NOT
Honestly they’re not even pretty and the music sucks.... What do people see?? | Test NOT

Table 4: Similar tweets with different labels across OLID and test set.

5 Conclusion and Future Work

In this paper we describe our system and method for detecting offensive tweets built for SemEval-2020
Task 12 - subtask A. Our design choices had an adversarial environment in mind and therefore we’ve
made use of anti-adversarial features such as text normalisation and ensemble learning, obtaining strong
results in 2 evaluation datasets. In a future work we would like to explore different attack and defence
scenarios for this particular problem.
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