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Abstract

In this work, we combine the state-of-the-art BERT architecture with the semi-supervised learn-
ing technique UDA in order to exploit unlabeled raw data to assess humor and detect propaganda
in the tasks 7 and 11 of the SemEval-2020 competition. The use of UDA shows promising results
with a systematic improvement of the performances over the four different subtasks, and even
outperforms supervised learning with the additional labels of the Funlines dataset.

1 Introduction

In times when information is able to circulate freely via the internet with limited to non-existing qual-
ity control, organized groups and governments are using various tools of propaganda to spread miss-
information and push their own agenda to achieve financial and political gains (Miller, 1939). With
millions of press articles written every month, it became unrealistic for humans to perform any form of
regulation. Machine Learning (ML) can help with the automatic processing of large volumes of data,
but paradoxically also requires a significant amount of examples in order to apprehend high-level con-
cepts such as humor or propaganda. More and more solutions to this problem are emerging, for example
Transfer Learning (Pan and Yang, 2010) which allows the use of already existing resources to increase
the performance of a given task. It can be achieved by using a larger and closely related dataset, or
simply by fine-tuning a pre-trained model.

A recent neural architecture proposed for natural language processing in (Devlin et al., 2018) and
achieving state-of-the-art results in numerous tasks is called Bidirectional Encoder Representations from
Transformers (BERT). One of the reasons for its popularity is the availability of models pre-trained with
large resources in different languages. It is based on the combination of bidirectional Long Short-Term
Memory (LSTM) networks, described in (Hochreiter and Schmidhuber, 1997) and Attention Mecha-
nisms, described in (Bahdanau et al., 2015). Both techniques have been discussed and considered as
promising subjects of study in previous works (Daval-Frerot et al., 2018) on sentiment analysis during
the SemEval-2018 challenge.

Another solution to deal with the data collection is to exploit raw data with semi-supervised ap-
proaches. Both humor assessment in Task 7 (Hossain et al., 2020a) and propaganda detection in Task
11 (Da San Martino et al., 2020) have the advantage of a wide availability of samples in online press
articles. By avoiding the use of labels, a lot more resources can be used through techniques like Un-
supervised Data Augmentation (UDA) proposed in (Xie et al., 2019). The idea is to draw similarities
between labeled and unlabeled data during a semi-supervised training, making the overwhelming mil-
lions of un-regulated articles into a strength as an exploitable resource.

In this paper, we propose to combine the two solutions along with other practices with the objective
of using the bare minimum of human-prepared resources while simultaneously improving the perfor-
mances.

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/.
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2 Task descriptions

2.1 Task 7: Assessing Humor in Edited News Headlines
The purpose of the task, described in (Hossain et al., 2020a) is to estimate the funniness of micro-edited
headlines, where a micro-edit is defined as one of the following word-wise replacements: entity to noun,
noun to noun, and verb to verb. Each member of a jury, consisting of at least five people, assigns a grade
to the headlines. The grade is an integer from 0 to 3 where 0 means ”not funny”, 1 means ”slightly
funny”, 2 means ”moderately funny” and 3 means ”funny”. All the scores for a given modified headline
are then averaged to obtain a unique real value. However, each of the individual scores are also available
in the official dataset described in (Hossain et al., 2019). The task itself is split into two subtasks to
which we refer as 7-1 and 7-2.

The first subtask is a regression based approach with the aim of directly predicting the averaged fun-
niness of the edited headlines. Two alternatives exist using classification, since the prediction should
only take a small, finite number of values: the system could be trained to only predict the few possible
scores, or even simply to learn the preferences of each judge. However, the number of judges can vary
and the individual scores are ordered by value and not by person, making these two approaches less
straightforward. We decided to stick to the regression as the task was thought.

The second subtask is a ternary comparison between two modifications of the same headline in order
to find the funniest. One micro-edit can be considered more fun, less fun or equally fun to another, but
the last possibility was not considered for the evaluation. Once again there are a few ways to tackle the
problem:

• use the system previously trained for task 7-1 to predict a value for the two edited headlines as
independent samples and then compare the predictions.

• train a similar system to predict a value different from the given scores. As the grades are the
average of at least five different values, the distribution tends to be denser around the mean score
(as shown in Figure 2), in addition to the naturally unbalanced observed density. A more uniform
distribution could be obtained for example by using an isotonic regression, making the comparison
more robust for originally close values.

• train a new system taking the two modified headlines as input and predicting explicitly which sample
is funnier. The system should be constrained to be symmetrical, with an architecture inspired for
example by siamese networks (Bromley et al., 1993).

We chose the first proposition in order to focus on subtask 7-1, as it was advantageous for both sub-
tasks. In addition, it allowed to considerably reduce the number of trainings, and so the overall compu-
tational resources required.

2.2 Task 11: Detection of Propaganda Techniques in News Articles
The task described in (Da San Martino et al., 2020) deals with the automatic detection of propaganda in
news articles, and was proposed in a slightly different version in a previous workshop named NLP4IF
(Da San Martino et al., 2019a). It is composed of two complementary subtasks, namely Span Identifi-
cation and Technique Classification. Although they are called SI and TC by the organisers, we kept the
format defined with task 7 and refer to them as 11-1 for SI, and 11-2 for TC.

The first subtask is a segmentation of news articles to detect propaganda. The fact that the labels
are sub-sequences inside sentences was constraining for the pipeline, for example with the choice of
augmentations. For the same reason, it was also the most computationally expensive subtask. The
system was trained on a word-wise level as it allowed more freedom, such as replacing words or simply
modifying them without altering the ground truth. It also reduced the time required for trainings. More
details about the nature of the samples and labels are given in (Da San Martino et al., 2019b).

The second subtask is a classification of the previously detected segments into one of the 18 propa-
ganda techniques, regrouped into 14 classes listed in Table 2. As several segments with different labels
can be present in some sentences, the inputs given to our system were strictly composed of the tokens
belonging to one specific segment, and not including for example the surrounding words or sentences.
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3 System overview

The submission is based on the Unsupervised Data Augmentation (UDA) technique described in (Xie
et al., 2019) applied to a pre-trained BERT architecture (Devlin et al., 2018) in order to use external,
unlabeled resources in addition to the official datasets. The pipeline is composed of the following steps,
with more details for most of them in specific subsections:

1. Pre-processing: the samples are tokenized using the nltk package described in (Loper and Bird,
2002). In the case of subtask 11-1, the articles are also split into sentences.

2. Augmentation: more samples are generated using various kinds of modifications over both labeled
and unlabeled datasets.

3. Feature extraction: the submitted system works on subword-level embeddings used with the BERT
architecture, but other experiments were also conducted on word-level embeddings with GloVe
(Pennington et al., 2014).

4. Semi-supervised training: the augmentations are used following the UDA technique to re-train an
existing BERT model where the last layer was adapted to the specific subtasks.

5. Ensemble: the training step is repeated several times with small variations to produce different
instances to aggregate them into an ensemble.

6. Post-processing: the predictions are processed to match the required submission format. In the case
of subtask 11-1, the predictions are smoothed to avoid micro gaps between words or other tokens.

The aim of the overall pipeline was to keep out manually labeled data as much as possible, in opposi-
tion to previous works described in (Daval-Frerot et al., 2018), although it is a source of quality features.
It concerns mostly the use of lexicons, as they are often specific to languages or tasks and require a lot of
human time. It was preferred to rely only on unsupervised feature extraction techniques such as GloVe.

3.1 Data augmentations
A common practice in supervised learning is to apply augmentations to the collected samples in order
to increase their number and their diversity, resulting in better performances as shown in (Simard et
al., 1998). An efficient augmentation is a modification which should at least respect the two following
purposes:
• introduce more information: the new sample should be different enough from the original sample in

order to carry additional knowledge about the task. It can be done by discarding useless information,
or drawing similarities with other samples.
• keep the data realistic: the new sample should follow the same format as the rest of the data, and be

plausible under the scope of the task. The label should preferably stay the same, or at least change
in a predictable way.

Examples

Originals
1. ”The larger-than-usual outbreak had helped spread the bacteria that causes the plague.”
2. ”The icy cigar was probably knocked askew by a violent collision with another object.”
3. ”The big frigid blue ball is the farthest planet from the Sun and it hasn’t been studied as much.”

Back-translations
(French)

1. ”The epidemic, larger than usual, has contributed to the spread of the bacteria responsible for the plague.”
2. ”The frozen cigar was probably knocked over by a violent collision with another object.”
3. ”The large icy blue ball is the most distant planet from the Sun and it has not been studied as much.”

Back-translations
(German)

1. ”The above-average outbreak had helped spread the bacteria that caused the plague.”
2. ”The icy cigar was probably lopsided by a violent collision with another object.”
3. ”The big cold blue ball is the most distant planet from the Sun and has not been examined as much.”

Synonym
replacements

1. ”The larger-than-usual irruption had facilitated diffuse the bacteria that stimulate the plague.”
2. ”The cold cigar was credibly bumped askew by a vehement hit with another object.”
3. ”The big frigid bluing glob is the farthest satellite from the Sun and it hasn’t been analysed as much.”

TF-IDF
replacements

1. ”An larger-than-usual outbreak will helped spread as bacteria in causes spin plague.”
2. ”Barbecuing icy cigar was as knocked askew to herald insides collision the another object.”
3. ”No big frigid blue mustache is by farthest planet from and Sun or airhorn hasn’t from studied grand much.”

Table 1: Three sentences selected from task 11 dataset with examples of samples generated using aug-
mentations.
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As the two objectives are partially opposed, it is important to find the right balance. A relevant ap-
proach used in (Xie et al., 2019) is to mix several techniques with different degrees of respect for one or
the other. By following this idea we decided to explore three different augmentations:
• Back-translation: used for example in (Sennrich et al., 2015), it consists in translating a sentence

into another language before translating it back to the source language. The semantic is generally
preserved and the new sentence is still grammatically correct, while adding diverse formulations
and expressions to the dataset.
• Synonym replacement: another way to reformulate a sentence is to swap the nouns and verbs

with their synonyms. The effect is similar to the back-translation, with the disadvantage that syn-
onyms are applied to words while back-translation can change the whole structure of the sentence.
However, this technique is more accessible for automatic large-scale processing, both in term of
resources and computation.
• TF-IDF replacement: the idea is to replace the least important words of the sentence with other

unimportant words, with regard to their use in the corpus through their TF-IDF score. The generated
sentences are no longer grammatically correct, resulting in noisy sentences and forcing the system
to filter out non-essential information.

The use of augmentations can improve the system performance, as mentioned previously, but it is
important to point out that the new samples are close to their originals. This redundancy becomes limiting
when increasing the amount of generated samples (Simard et al., 1998). The point is often to avoid
collecting more data, which can be consuming both in time and resources. In the present case, the raw
data consisting of press articles and titles is widely available in a large amount. The expensive part is
to manually annotate the samples, resulting in restricted datasets. In that specific case, the approach
described in (Xie et al., 2019) called UDA allows to make use of that unlabelled raw data through semi-
supervised learning. Their proposition is based on consistency training methods, used to produce systems
more robust to noisy inputs (Bachman et al., 2014). Augmentations can by definition be used to produce
small variations in the samples, and actually proved to be efficient to enforce consistency. One method
in particular is to not consider the original and augmented samples as independent: while the prediction
obtained from the original sample should correspond to its label, the prediction from the augmented
sample should simply be close to the prediction from the original sample. The model M is trained with
a loss function L which can be formalized as:

L(M |X,Y) =
∑

x,y∈XY
L1(M(x), y) +

∑
x,x̃∈XX̃

L2(M(x̃),M(x)) (1)

• X, X̃, Y the sets containing the original samples, the augmented samples and the labels.
• XY the set containing the relevant pairs of original samples and labels.
• XX̃ the set containing the relevant pairs of original and augmented samples.
• L1 the loss applied over a prediction from an original sample and its label.
• L2 the loss applied over predictions from an original sample and one of its augmented versions.

The important point in (Xie et al., 2019) approach is that the second term in equation (1) does not
depend on the labels, meaning it can be applied over unlabeled data. The difference is that without the
first term to guide the model, no relevant convergence is guaranteed over the unlabeled part of the dataset.
However, a significant gain in performances has been observed, which is interpreted as a ”spread” of the
labels: by similarity with labeled samples, some unlabeled samples obtained labels by induction which
then spread even further, with sometimes a surprising low label-to-sample ratio.

3.2 Model ensembles
The idea of ensembles is widely used in machine learning, and not only with neural networks (Opitz
and Maclin, 1999). One of the methods consists in using different instances of a given architecture by
combining the predicted output. It can lead to scores better than any of the single instances mainly due
to the following reasons.



1869

Figure 1: Scores for task 7-1 development set us-
ing UDA with different sizes of LSTM ensembles.
All of the

(n
k

)
combinations were tested with size

k ∈ [[1, 10]] and n = 15 different instances.

The first reason is the variability between in-
stances. For neural networks, the non-convexity of
the problem implies different solutions depending
on the initial state of the weights. Several other
factors can introduce even more variability, such
as data augmentation since most techniques rely on
random modifications. Also in our context, semi-
supervised learning through UDA is prone to more
diverse solutions.

The second reason comes from the practice of se-
lecting the best epoch during the training by split-
ting the dataset into training and validation sets.
The latter should be large enough to estimate the
general performance of the system, which means
sacrificing a significant part of the data. In addition
it also leads to more variability. Using several in-
stances allows to cover the entire dataset while still
selecting the best epochs with enough data.

3.3 Metric optimizations

In task 11 the metric chosen for the evaluation is the F1 score, and more precisely micro-average F1

score in the case of the 11-2 subtask. This choice is common for language processing even though it can
be questioned based on several criteria (Ferri et al., 2009). This is not the aim of this part, although some
points require a special attention.

Technique n % Σ%

Loaded language 2123 34.6 34.6
Name calling, Labeling 1058 17.3 51.9
Repetition 621 10.1 62.0
Doubt 493 8.1 70.1
Exaggeration, Minimisation 466 7.6 77.7
Appeal to fear/prejudice 294 4.8 82.5
Flag-waving 229 3.7 86.2
Causal oversimplification 209 3.4 89.6
Appeal to authority 144 2.4 92.0
Slogans 129 2.1 94.1
Whataboutism, Straw men,
Red herring 108 1.8 95.9

Black-and-White fallacy 107 1.7 97.6
Thought-terminating cliches 76 1.2 98.8
Bandwagon,
Reductio ad hitlerum 72 1.2 100.0

Table 2: Number of occurrences per technique in
the task 11 training dataset in decreasing order with
percentage and cumulative percentage.

First of all, the F1 score is defined as a harmonic
mean of the precision and recall, so in the end de-
fined by the output probabilities through true pos-
itives tp, false positives fp and false negatives fn
as:

F1 =
2tp

2tp+ fp+ fn
(2)

Since all of those parameters are dependent on
the chosen classification threshold, it is possible to
find different scores from the same predicted prob-
abilities. The two approaches to solve this problem
according to Lipton (2014) are:

• directly use the F1 score as a loss when fitting
the model to the dataset.
• estimate the optimal threshold during training

with various techniques.

The same paper demonstrates that the optimal threshold is half the maximum F1 under the assumption
that the model output is a well-calibrated distribution. Once again different methods exist to either
enforce this condition when training the model, or transform the output into such a distribution (Zadrozny
and Elkan, 2002). However, to keep the implementation simple we chose to do a grid search of the best
threshold during the validation step to both learn the threshold and avoid selecting the wrong best epoch
because of the mentioned F1 variability.

Secondly, the micro-averageF1 score is dominated by common labels in the case of unbalanced classes
(Lipton et al., 2014). The distribution in the training dataset is shown in Table 2 in the case of task 11-2.
The most represented class is Loaded language with 34.6%, which is more than the 10 least represented
propaganda techniques. It could be advantageous to simply ignore a few techniques.



1870

4 Experimental setup

4.1 Datasets

The datasets provided for the task 7 and 11 are respectively described in (Hossain et al., 2019) and
(Da San Martino et al., 2019b), and will not be detailed much. One dataset is provided for each subtask,
but note that dataset 7-2 only consists of ternary comparisons of some samples from dataset 7-1, which is
composed of 9652 original and modified headlines. The dataset 11-1 consists of 371 articles associated
with 5468 segments as labels, corresponding to the input segments of dataset 11-2 to classify into one of
the 14 classes.

An additional 8248 samples with labels were provided by the organizers of task 7, released as the Fun-
lines1 dataset described in (Hossain et al., 2020b). This is technically an external source, as the methods
and people in charge may slightly differ from the official dataset. We conducted a few experiments with
it, both as additional data with label and using UDA without labels.

Another external dataset was used for task 11 without labels through semi-supervised learning. Orig-
inally available on Kaggle, we refer to it as All-the-news-articles2 dataset. It consists of around 204k
articles with headlines, but only up to 1000 randomly chosen articles were used per training for techni-
cal reasons. For task 7 we preferred to apply UDA with the Funlines dataset only, as it would require
additional steps to generate fun modifications of the titles from All-the-news-articles dataset.

4.2 Trainings

The implementation used for BERT is available in the transformers3 package described in (Wolf
et al., 2019), with different pre-trained versions. We used fine-tuning on the basic version and refer it
as BERTfine. We also proposed to train one from scratch, but to avoid overfitting we empirically chose
to reduce the size to 2 layers of 64 neurons each. We refer to it as BERTsmall, and added a similar
bidirectional LSTM network for comparison. The three architectures can be conveniently adapted to
regression and sentence/token classification.

All of the networks were trained using Adam with a learning rate of 1× 10−3 during 15 epochs from
scratch, and 1× 10−5 during 5 epochs for fine-tuning. The main losses are MSE for task 7 and BCE for
task 11. The secondary losses used with UDA are MSE for task 7 and the Kullback-Leibler divergence
for task 11. The validation sets were composed of a random 1/5th of the available data, and consequently
we chose to use ensembles of 5 instances.

Although the back-translation is recommended in (Xie et al., 2019), we chose to avoid it since we
could not find any official open-source package for proper translations, and because task 11-1 required
to keep the same number of tokens in a similar order to keep the labels relevant. Thus for both regular
augmentations and UDA we augmented all samples twice with TF-IDF and synonym replacements.

4.3 Other models

More classic techniques have been tested to assess the quality of the propositions, namely Support-Vector
Machine (SVM), Gradient Boosting (GB) and Random Forest (RF).

The input features were obtained by averaging GloVe (word-level) embeddings over either the samples
for tasks 7 and 11-2 or a 5-word long sliding window for task 11-1. The use of ensembles was not
considered relevant since the first one solves a convex problem, and the other two already are aggregates
of models.

The scikit-learn4 library, described in (Pedregosa et al., 2011), has been used for all those mod-
els using default arguments for both instantiations and trainings, as the goal is to propose a reproducible
baseline.

1https://www.funlines.co/humor
2https://components.one/datasets/all-the-news-articles-dataset/
3https://huggingface.co
4https://scikit-learn.org
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5 Results

5.1 Analysis

The curves in Figure 1 are showing the evolution of the scores over the subtask 7-1 development set
with an increasing size of the ensembles. The average RMSE score of all the possible combinations is
monotonously decreasing with a cumulated improvement of 0.01 going from k = 1 (single models)
to k = 10 (10 models per ensemble). Around 60% of the gain is made between k = 1 and k = 2
with a better score than the best single model alone. However, the best score represented by the lower
dotted curve is flat from k = 6 to k = 8 and starts to increase after that, suggesting that the average
performances may be reduced beyond k = 10.

Figure 2: Distribution of the predictions against the
expected grades for task 7-1 development set, and
the fitted linear regression. The data density for
the predictions and expected grades are respectively
shown to the right and on top.

Each dot in Figure 2 represents a prediction,
and is partially transparent to give an idea of the
local density. The perfect ideal system would
result in dots perfectly centered around f(x) =
x, but here the linear regression is f(x) =
0.23x + 0.76 and the dots are widely spread
around it. No prediction is made outside of
the range [0.3, 2.0]. Note that the performance
associated to those predictions is an RMSE of
0.524 while the best candidate achieved a score
of 0.513 over the development set.

The experiments with scores shown in Table 3
aim to determine the best use of the Funlines
dataset in task 7. Note when reading the table
that the RMSE should be minimized while accu-
racy should be maximized. The results obtained
using the samples without the labels with UDA
(B) are systematically better than the two other
cases. Also the results when using both sam-
ples and labels through a regular training (C) are
worse than the case where the Funlines dataset
is not used at all (A) in a quite significant way in
subtask 7-1 while only slightly worse in subtask
7-2.

The main scores over all subtasks are gathered in Table 4. Note once again that the RMSE should
be minimized while all other metrics should be maximized. Among the proposed techniques, UDA is
systematically better than the common use of augmentations (Aug.) and no data augmentation (Base)
for a given model. The common augmentation even appear to be detrimental in the case of subtask 7-2
with BERTsmall. Among the proposed systems, BERTfine is better in most cases, followed by LSTM,
then BERTsmall and finally the baselines.

5.2 Discussion

The previous observations allow to draw a few conclusions in the present case. The most interesting one
in regard to our personal objectives concerns the Funlines dataset. The use of semi-supervised learning
allowed to achieve better scores by using quality samples, even when the associated labels were not
relevant to detrimental. However, the poor distribution of the predictions shown in Figure 2, close to the
best results obtained during the competition, suggests that the task objective is far from being achieved.
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Funlines 7-1 (RMSE) 7-2 (Acc)
Samples Labels LSTM BERTsmall BERTfine LSTM BERTsmall BERTfine

A) No No 0.548 0.554 0.538 0.589 0.579 0.604
B) Yes No 0.541 0.552 0.524 0.606 0.599 0.620
C) Yes Yes 0.562 0.566 0.549 0.588 0.576 0.602

Table 3: Results with different uses of the Funlines dataset in subtasks 7-1 and 7-2. A) corresponds to
trainings using only the official dataset, B) to trainings additionally using the Funlines dataset without
labels through UDA, and C) to trainings using the union of the official and Funlines datasets as regular
data.

RF GB SVM LSTM BERTsmall BERTfine

Base Aug. UDA Base Aug. UDA Base Aug. UDA
7-1 (RMSE) 0.581 0.559 0.553 0.548 0.545 0.541 0.554 0.562 0.552 0.538 0.528 0.524
7-2 (Acc) 0.559 0.589 0.605 0.589 0.596 0.606 0.588 0.579 0.599 0.604 0.618 0.620
11-1 (F1) 0.218 0.259 0.261 0.304 0.320 0.341 0.307 0.318 0.336 0.319 0.349 0.363
11-2 (µF1) 0.415 0.472 0.448 0.501 0.510 0.513 0.481 0.486 0.508 0.502 0.516 0.523

Table 4: Scores of the different systems over the development sets of the four subtasks, using the official
evaluation metrics: Root Mean Square Error (RMSE), Accuracy (Acc), F1 score (F1), micro-average F1

score (µF1).

Moreover, the labels from the Funlines dataset are gathered using methods similar to the official
dataset, raising questions about the observed difference and suggesting perhaps subjectivity of humor
is quite impacting. The approach proposed in subsection 2.1, consisting in estimating the humor of each
judge, may have been interesting to study. On the same page, the subtask 7-2 could have benefited from
one of the more specific solutions proposed, as it was shown in Figure 2 solving a regression problem
seems quite inefficient to establish comparisons even though the 0.620% accuracy is close to the 0.649%
best candidate accuracy.

On the contrary, the results obtained for subtask 11-1 are significantly lower than the best achieved with
an F1 score of 0.363 compared to 0.534. The consistency between our proposed baseline and the multiple
tests suggests some missing processing steps in our pipeline. In that case our different propositions would
likely still be relevant to enhance stronger systems if no similar solutions were already used. Indeed, the
largest gains in performances using UDA are observed on the submissions for subtasks 11-1 and 11-2,
the latter achieving correct results in regard to the competition. The impact of the amount of external
resources was not studied because of technical limitations, but is an objective in the near future.

6 Conclusion

In this competition we decided to highlight a few practices that could benefit many domains at lower
cost. The performances in the various tasks covered by this article have all been improved by the use
of semi-supervised learning with UDA, and in some cases even more than supervised learning with ad-
ditional, closely related, external resources. The availability of systems pre-trained with large resources
such as BERT also enhanced the performances through transfer learning. The common point between
these two techniques is to turn incomplete or unrelated resources into knowledge for the neural network
architectures.

The different propositions were discussed and most of them have room for improvements. The limited
computational resources available constrained the experiments, as for example just 2.4% of the external
datasets found were actually used. Moreover, in an effort to keep the pipeline simple, a few steps dis-
cussed in (Xie et al., 2019) were avoided but could be used. In general, more specific approaches of each
task will be subject to further research.
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