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Abstract

In this paper, we present our approach for the ’Detection of Propaganda Techniques in News
Articles’ task as a part of the 2020 edition of International Workshop on Semantic Evaluation.
The specific objective of this task is to identify and extract the text segments in which propaganda
techniques are used. We propose a multi-system deep learning framework that can be used to
identify the presence of propaganda spans in a news article and also deep dive into the diverse
enhancements of BERT architecture which are part of the final solution. Our proposed final model
gave an F1-score of 0.48 on the test dataset.

1 Introduction

Propaganda (prop-uh-gan-duh) is defined as ”information, ideas, opinions, or images, often only giving
one part of an argument, that are broadcast, published, or in some other way spread with the intention of
influencing people’s opinions”. Developing artificial intelligence to identify the propaganda in an article
will not only help the readers but also the authors to be careful and write with more rationality, devoid
of unintentional propagandist elements. For this, the paper presents a comprehensive solution by team
‘Transformers’ to detect propaganda spans in news articles. We model this task as a word-level binary
classification problem, which needs a lot of latent space and deep representations to encapsulate and
detect the words with propaganda engraved in them. The central idea we utilized is fine-tuning a BERT
(Devlin et al., 2018) model with multi-sample dropout and convolution layers on top of it to stabilize
the training loss and enhance the model generalizability. We have also experimented with our model
performance with various loss functions including the focus loss and weighted cross-entropy. Finally, we
have developed an ensemble of BERT based models with combinations of convolutional neural network
(CNN) and multi-sample dropout to efficiently detect the text spans having hidden propaganda. Our
ensemble learning approach 1 has shown to perform exceedingly well and we were one of the top 10
teams in the propaganda span identification challenge .

2 Background

There were two challenge tracks as part of the SemEval2020 shared-task 11 (Da San Martino et al., 2020)
namely, span identification (SI) and technique classification (TC). We have worked on the SI task and
explained our methodology in this paper.

The input data provided by the organizers (Da San Martino et al., 2019) are news articles in plain text
format. The article can be further divided into sentences using new line elements. The dataset has 371
train articles, 75 development articles, and 90 test articles. Each article is provided with indices of the
start and end of a span of characters that represent a propaganda span. The details of the data provided
can be found in Table 1.

(Li et al., 2019) propose a Logistic regression with Tf-IDF, BERT vector, sentence length, readability
grade level, motion features to solve the propaganda detection task as a binary classification problem.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

1Code to reproduce the framework can be found in https://github.com/vinodhmvk/propagnada-detection

https://dictionary.cambridge.org/dictionary/english/propaganda
https://github.com/vinodhmvk/propagnada-detection
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Articles Sentences Words Spans
Train Set 371 16539 344095 5468

Development Set 75 3177 57783 -
Test Set 90 3185 67003 -

Table 1: Count of Dataset Items.

(Yoosuf and Yang, 2019) approached the fine-grained propaganda detection task by fine-tuning the BERT
model and also investigated the attention heads for model interpretability. Also in (Yoosuf and Yang,
2019), authors methodology for propaganda sentence level classification problem involved an ensemble
of BiLSTM, XGBoost, and BERT models.

3 System overview

3.1 Pre-processing
Since the data provided by task organizers had propaganda spans annotated at the character level, we
converted these character level indices to word-level tokens and used them as input to our models. We
also preserved the character level indices of words with respect to articles. This helped us in generating
the character level indices for post-processing. We have omitted empty sentences from the model training.
The words are then treated to remove any irrelevant characters using regular expressions. Since our
experiments are performed on a sentence level passing, we have merged sentences that are part of a
common unique propaganda span.

3.1.1 ELMo Pre-processing
For ELMo (Peters et al., 2018) based models we reconstructed the data as sequence input to sequence
output. Here the input is a sequence of words belonging to one sentence with maximum length allowed to
90 words and used post padding. The output sequence of 0 and 1 with the same length as input.

3.1.2 BERT Pre-processing
For BERT based models we have the input sequence same as for the ELMo based models. The input
sequence is passed through BERT tokenizer based on WordPiece (Wu et al., 2016) tokenization which
divides every word in the input sequence into multiple sub-strings. For training the span identification
model, we one-hot encoded the tokenized words for input sequence into a 3 class target vector which is
defined as [x, y, z], where x is non-propaganda class, y is propaganda class and z indicates if the word is a
sub-string created by BERT tokenizer.

3.2 Modeling
3.2.1 ELMo
ELMo provides contextualized word embeddings for various downstream tasks. ELMo extends a tradi-
tional word embedding model with features produced bidirectionally with character convolutions. We
train our baseline model utilising the pre-trained ELMo embeddings. The input is the sentence wise list of
tokens and the output is predicted entities: propaganda or not-propaganda. We stack two bidirectional
LSTM layers on top of the ELMo embeddings. Now to this network, a residual connection is added
between the first and second LSTM layers. The network is trained end to end to output token wise
probability per sentence.

3.2.2 BERT Baseline
BERT stands for bidirectional encoder representations from Transformers, is designed to learn deep
bidirectional representations by jointly conditioning on both left and right context in all layers. The
pre-trained BERT can be fine-tuned to create competitive models for a wide range of downstream tasks,
such as named entity recognition, relation extraction, and question answering. Since its inception BERT
model has become quite popular both as a Natural Language Processing (NLP) research baseline and as a
final task architecture.
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BERT has undergone many changes to become RoBERTa (Liu et al., 2019) from Facebook. RoBERTa
builds on BERT’s language masking strategy, wherein the system learns to predict intentionally hidden
sections of text within otherwise un-annotated language examples. In our exploration we evaluate baselines
based on the two variants of pre-trained BERT language model: BERT base, BERT large and pre-trained
RoBERTa base for our task of detecting propaganda spans. Input for the model are the sentences which are
token wise encoded using the corresponding pre-trained model tokenizers and the token-wise labels for the
input sentences. Inputs are derived from the pre-processing step described above. For our baseline models,
we use the dropout layer with the dropout probability of 0.1 and add the linear classification layer with
softmax activation on top of the pre-trained transformer based architectures to output final probabilities
per token. This output is post-processed from token level to get word level and subsequently the character
level predictions. Experiments indicated that fine tuning of BERT base model outperformed the others
based on the validation F1 score and chosen as baseline for comparison in our further experiments.

3.2.3 BERT-CNN
We modify BERT token level classifier by replacing the linear layer with a one-dimensional convolutional
neural network (CNN) on top of BERT followed by the softmax layer. From the experiments, we show
that CNN network helps to identify local patterns in the BERT’s output features and learns suitable
discriminatory representation to detect propaganda spans in the text.

3.2.4 Multi-Sample Dropout
In his work (Inoue, 2019) has shown that Multi-Sample dropout, an enhanced dropout technique leads
to faster training and improved generalization over the original dropout. We take cues from the work
mentioned and use the same technique for our BERT based fine tuning experiments. In our implementation
we use 5 dropout layers with dropout probability set to 0.5 for all of them. Different masks are used for
each dropout sample in the dropout layer so that a different subset of neurons is used for each dropout
sample. However, the parameters are shared between the layers preceding the multi-sample dropout. We
compute loss for each dropout sample using the same loss function and the final loss value is obtained by
averaging the loss values for all dropout samples. This final loss value is used as the objective function for
optimization during training.

We train both BERT-CNN, BERT with linear classification head accompanied by multi-sample dropout
and use them in our ensemble to output final predictions.

3.2.5 Loss Functions
The train dataset released under this challenge contains 16539 sentences in total. Out of these 3988
sentences contain at least one propaganda phrase. Also we have 5468 propaganda spans in 344095 total
words present. This indicates imbalance between propaganda vs non-propaganda instances on sentence
and word level as well. Since the non-propaganda data dominates the training set, it is desirable to weight
the propaganda instances higher in the training. We achieve this by weighting the loss function for a word
higher if it belongs to a propaganda class in a labelled dataset.

Let X denote a labelled sentence after preprocessing of length (number of tokens) N and each token xi
∈ X has a gold label yi = [yi0, yi1, yi2] and pi = [pi0, pi1, pi2] are the predicted probabilities for the three
classes respectively. As mentioned in Section 3.1.2, yi0, yi1,yi2 are Non-Propaganda class, Propaganda
class and BERT created sub-string class respectively. The cross entropy loss for X is given by:

CrossEntropy = − 1

N

N∑
i=1

3∑
j=1

yij log pij (1)

We use a class-wise weighting scheme provided by w where w = [w0, w1, w2].

WeightedCrossEntropy = − 1

N

N∑
i=1

3∑
j=1

wjyij log pij (2)
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We tune the value of class-weights based on the model’s performance on the validation set. Our Experi-
ments showed that the weight value of 10 for propaganda class and 1 for the remaining two yields the
best performance for this task. Inspired by the success of focal loss (Lin et al., 2017) in computer vision,
we experimented with it to fine tune the BERT model. Focal loss is modified from cross-entropy loss by
adding a modulating factor (1− pγt ) to the cross-entropy loss. Formally, the focal loss is expressed as
follows:

FL = −αt(1− pγt ) log pt (3)

However in our fine-tuning experiments, it did not offer considerable improvements over weighted cross
entropy loss. Hence, it was not utilised to train final models. We suspect we could not find suitable hyper
parameters to make focal loss work in our limited experiments.

4 Experimental setup

Our implementation is based on pytorch (Paszke et al., 2017) framework, Transformers (Wolf et al., 2019)
for all our experiments involving fine-tuning the BERT architecture.

While training our models, we split the labelled data into two parts: the training set, consisting of 80%
of the data is used to train models, whereas the remaining non-overlapping 20% of the data referred to as
internal validation set, is used to test the effectiveness of the models.

All our BERT-based models are based on the uncased model of BERT. In our training procedures we
utilize the AdamW optimizer with a learning rate value of 0.001. We also add some weight decay as
regularization to the model’s weight matrices. Hyper parameters shared across models are batch size: 32,
maximum sequence length: 128, weight decay: 0.01.

We used F1 score on the validation set as a proxy for the generalization error to monitor our model’s
performance as training progresses. We stop training once the model’s performance stops improving.
When picking the model to use for our final ensemble, we pick the model with F1 score greater than a
threshold on the validation set.

Figure 1: Multi System Framework

5 Results and Conclusion

The final models for our ensemble are shown in Figure 1. We get the final probability by taking the
average of raw scores of the propaganda class from all the three models, these world level scores range
between 0, 1. In post-processing we convert the word level tags into character level indices for evaluation.

The performance of the final showcase models can be seen in Table 2. We used the performance of a
model on a development dataset as a benchmark to choose better performing models. The best performing



1827

Model Metric Dev Test
ELMo F1 0.38 0.41

Precision 0.29 0.36
Recall 0.56 0.46

BERT-Linear F1 0.428 0.469
Precision 0.338 0.427

Recall 0.583 0.520
BERT-Linear-Multi F1 0.426 0.469

Precision 0.353 0.444
Recall 0.536 0.496

BERT-CNN-Multi F1 0.421 0.471
Precision 0.324 0.421

Recall 0.597 0.534
BERT-Ensemble F1 0.437 0.481

Precision 0.354 0.443
Recall 0.571 0.527

Table 2: Performance of Models on Development and Test sets.

single model is BERT-Linear with a F1 score of 0.428. But the overall best model is BERT-Ensemble
with an F1 score of 0.438. We achieved an F1 score of 0.481 on test datasets.

In this paper, we have investigated models and techniques to detect if a text span in an article is
propaganda or not. Experimental results showed that the ensemble of fine tuning modified BERT based
architectures has achieved the best results. Regarding future work, we plan to explore a semi-supervised
paradigm to train the models with less labeled data. Also, we want to explore FLAIR embeddings (Akbik
et al., 2018) and latest text-to-text transfer T5 (Raffel et al., 2019) architecture which have shown excellent
performance in Entity extraction tasks.
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