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Abstract

In this paper, we show our system for SemEval-2020 task 11, where we tackle propaganda span
identification (SI) and technique classification (TC). We investigate heterogeneous pre-trained
language models (PLMs) such as BERT, GPT-2, XLNet, XLM, RoBERTa, and XLM-RoBERTa
for SI and TC fine-tuning, respectively. In large-scale experiments, we found that each of the lan-
guage models has a characteristic property, and using an ensemble model with them is promising.
Finally, the ensemble model was ranked 1st amongst 35 teams for SI and 3rd amongst 31 teams
for TC.

1 Introduction

This paper shows our proposed system for the SemEval-2020 task 11: Detection of Propaganda Tech-
niques in News Articles (Da San Martino et al., 2020). The goal of the task was to design a model to
detect and classify propaganda. To this end, there are two subtasks: span identification (SI) for predicting
propaganda spans and technique classification (TC) for predicting propaganda technique types used for
a given span. SI can be assumed as a sequence labeling problem and TC as a multi-label classification
problem.

Recent studies such as (Yoosuf and Yang, 2019; Vlad et al., 2019) proposed employing BERT (Devlin
et al., 2019), a pre-trained language model, for propaganda detection. Since propaganda detection tasks
require highly semantic understanding, leveraging such strong pre-trained language models is promis-
ing. However, new state-of-the-art pre-trained language models, such as XLNet (Yang et al., 2019) and
RoBERTa (Liu et al., 2019), are being proposed rapidly, and there are no sufficient studies on them in
the research on propaganda detection. Revealing the ability of capturing propaganda semantics with
state-of-the-art models could contribute to discussing future applications.

Therefore, we investigate state-of-the-art pre-trained language models (PLMs) for propaganda detec-
tion. We employ not only BERT (Devlin et al., 2019) but other PLMs such as GPT-2 (Radford et al.,
2019), RoBERTa (Liu et al., 2019), XLM-RoBERTa (Conneau et al., 2019), XLNet (Yang et al., 2019),
and XLM (Lample and Conneau, 2019). The PLMs are fine-tuned by our proposed SI and TC models
with various hyperparameters. We also propose an effective ensemble method with stacked generaliza-
tion, which is generally better than a naive average ensemble.

Our ensemble model was ranked 1st in SI and 3rd in TC, showing that leveraging state-of-the-art
PLMs is promising. We also empirically gained the following insights as described later.

1.RoBERTa and XLNet generally perform better for propaganda detection.
2.An ensemble model with all types of PLMs showed stable and better performance than employing

a single PLM type.
3.Each PLM has a different optimal learning rate, and finding the optimal one is essential to elicit high

performance.
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This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Related Work

Propaganda generally intends to promote an agenda or point of view with specific information such
as biased or misleading descriptions. Since detecting propaganda in text could be useful for further
applications such as detecting fake news, research on propaganda detection has been attracting much
attention. Barrón-Cedeño et al. (2019) proposed a model for assessing the “level” of propaganda in
an article. Da San Martino et al. (2019) focused on more fine-grained analysis, proposing a model for
detecting propaganda spans and classifying their techniques. Some recent studies (Yoosuf and Yang,
2019; Vlad et al., 2019; Hua, 2019; Fadel et al., 2019; Tayyar Madabushi et al., 2019) utilized PLMs
such as BERT (Devlin et al., 2019) to detect fine-grained propaganda. Our work is related to the studies
of (Fadel et al., 2019; Al-Omari et al., 2019), which employed ensemble models with PLMs. Different
from these studies, we further investigate the number of PLMs.

3 Pre-Trained Language Models (PLMs)

In this paper, six types of Transformer (Vaswani et al., 2017) based PLMs were used. The reason behind
this is to unify our implementation and evaluation. We provide a brief description of each PLM:
BERT (Devlin et al., 2019) is the epoch-making Transformer-based masked language model. We employ
a pre-trained model called bert-large-cased-whole-word-masking.
GPT-2 (Radford et al., 2019) is a model that followed Open AI GPT (Radford and Sutskever, 2018).
GPT-2 has achieved state-of-the-art results in a zero-shot setting.
RoBERTa (Liu et al., 2019) is a carefully fine-tuned BERT-based model, where the authors investigated
hyperparameters and training data size. RoBERTa has achieved state-of-the-art results on major text
benchmarks. We employ a pre-trained model called roberta-large.
XLM-RoBERTa (Conneau et al., 2019) is a cross-lingual version of RoBERTa. XLM-RoBERTa has
outperformed the cross-lingual BERT. We employ a pre-trained model called xlm-roberta-large.
XLNet (Yang et al., 2019) employs a generalized autoregressive pre-training in Transformers. XLNet
has outperformed BERT in major tasks. We employ a pre-trained model called xlnet-large-cased.
XLM (Lample and Conneau, 2019) is a cross-lingual language model, introducing an unsupervised
cross-lingual learning. We employ a pre-trained model called xlm-mlm-en-2048.

4 Propaganda Detection Models

Given a split sentence1, our SI model predicts propaganda spans. The TC model in turn predicts propa-
ganda techniques for given spans in a sentence.2 The technique labels include Loaded Language, which
uses words with strong emotional implications, Name Calling or Labelling, which describe an object
or something that the audience fears or sees as undesirable, Doubt, which questions the credibility of
something, and so on (Da San Martino et al., 2019). Refer to (Da San Martino et al., 2020) for more
details. The following subsections give details on the proposed SI and TC models.

4.1 SI Model

Figure 1a shows an overview of the proposed model for SI. Given a tokenized sentence, PLM ∈
{BERT,GPT-2,RoBERTa,XLM-RoBERTa,XLNet,XLM}, and bi-directional long short term memory
(BiLSTM) (Graves et al., 2013) encode the sentence, predicting propaganda spans with token-level BIO
tags, namely propaganda begins (B), is inside (I), or is outside (O) the spans. In addition, we provide
two joint auxiliary tasks to effectively train the model. These auxiliary tasks are described later.
Input Representation: To obtain input representations, we provide a layer-wise attention to fuse the

1For both SI and TC, given a news article, we split it into sentences. All the training and predictions were conducted on a
sentence level. Each sentence was tokenized by spaCy (https://spacy.io/), jointly obtaining the part-of-speech (PoS)
tag and named entity (NE) tag to make common input features.

2Note that we consider only sentences that contain propaganda in TC because the propaganda spans are given in the sub-task.
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Figure 1: Overview of our proposed models

outputs of PLM layers (Kondratyuk and Straka, 2019; Peters et al., 2018):

h
(si)
PLM,i = c(si)

∑
j

PLMij · softmax (s(si))j ,

where s(si) and c(si) are trainable parameters, and PLMij is an embedding of the i-th word token in the
j-th layer of a PLM.3 We also concatenated part-of-speech (PoS) embeddings (h(si)

PoS,i) and named entity

(NE) embeddings (h(si)
NE,i) for each token i.4 Therefore, the i-th word token is represented as:

h
(si)
i = h

(si)
PLM,i ⊕ h

(si)
PoS,i ⊕ h

(si)
NE,i,

where ⊕ is a concatenate operation.
BiLSTM-CRF: We employed BiLSTM-CRF because we preliminarily found that stacking BiLSTM-
CRF (Huang et al., 2015) on a PLM leads to better performance in SI. The input token representations hi

are fed to the multi-layered BiLSTM to obtain a further contextualized token representation:

e
(si)
i = BiLSTM(h

(si)
i ).

We apply a feed forward network (FFN) with one hidden layer and a fully-connected layer to the recurrent
states before classification:

ŷ(si_bio)
i =W (si_bio)FFN(si_bio)

(
e
(si)
i

)
+ b(si_bio),

where W (si_bio) and b(si_bio) are parameters. ŷ(si_bio)
i is the output of B, I, and O labels.5 Finally, we

employ a conditional random field (CRF) for training and prediction.
[Auxiliary1] Token-Level Technique Classification: This auxiliary task predicts token-level propa-
ganda technique classes to add more information for span identification.6 In fact, a previous study

3For subword-level PLM, subwords are averaged, and the averaged output per word token is used as the PLMij .
4Special embeddings are used for the PoS and NE embeddings of BoS and EoS tokens.
5Note that we ignored special tokens such as the beginning of sentence (BoS) token (e.g., [CLS]) and the end of sentence

(EoS) token (e.g., [SEP]) in the classifier.
6We extracted TC labels aligning with spans in SI in the training set. We did not use any TC labels in the development and

test set, and there was no problem when we contacted the organizers.
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(Schulz et al., 2018) suggests that joint training with multiple token-level tasks helps improve perfor-
mance in a low-resource setting. Our expectation is that spans for low-frequency propaganda techniques
can be detected with this auxiliary task. We achieve this by simply providing another output layer:

ŷ(si_tech)
i =W (si_tech)FFN(si_tech)

(
e
(si)
i

)
+ b(si_tech),

where W (si_tech) and b(si_tech) are parameters, and ŷ(si_tech)
i is the output of 14 propaganda technique

classes and a non-propaganda class.7 We also employ a CRF for training and prediction.
[Auxiliary2] Sentence-Level Classification: Given that sentences that contain propaganda are com-
paratively low in number when compared with non-propaganda sentences, we introduce a sentence-level
auxiliary task. This auxiliary task predicts sentence-level classes with lower granularity on the basis of
whether the sentence contains propaganda or not, and higher granularity token-level tasks are backprop-
agated only when a sentence contains propaganda. Therefore, we do not learn much information from
non-propaganda sentences for detecting spans. A similar idea was derived from the work of Da San Mar-
tino et al. (2019), in which they proposed incorporating a higher granularity task on the basis of lower
granularity information (sentence-level task) with a gating mechanism.

We provide another PLM layer attention and multi-layered BiLSTM to distinguish information be-
tween sentence-level and token-level tasks:

h
(si_sent)
i = h

(si_sent)
PLM,i ⊕ h

(si)
PoS,i ⊕ h

(si)
NE,i,

e
(si_sent)
i = BiLSTM(si_sent)(h

(si_sent)
i ).

Finally, we use the output from the BoS token8 9, predicting the probability that a sentence contains
propaganda:

ŷ(si_sent) = σ
(
v(si_sent)>FFN(si_sent)

(
e(si_sent)

BoS ⊕ φ
)
+ b(si_sent)

)
,

where v(si_sent) and b(si_sent) are parameters, e(si_sent)
BoS is the hidden state of the BoS token (e.g., normally

e(si_sent)
BoS = e(si_sent)

1 ), and σ is a sigmoid function. We also concatenated a structural feature vector
φ including the sentence length and positional information in its article. The positional information
includes binary signals if the sentence is located in the upper, middle, or lower.
Objective: Given that we have distinct sentence- and token-level tasks, our objective is described as:

L(si) = L(si_sent) +

{
0 if the sentence contains no propaganda spans
L(si_bio) + λL(si_tech) else

where L(si_sent) is a cross-entropy loss for the sentence-level task, and L(si_bio) and L(si_tech) are CRF loss
with a negative log likelihood for span identification and technique classification, respectively. λ is a
hyperparameter for controlling the auxiliary tasks. The objective means that if a sentence contains no
propaganda spans, token-level tasks are ignored. Also, we assign a weight to the sentence-level loss
according to the inverse proportion of positive samples to deal with class imbalance.

After training, we modify thresholds of the sentence-level task on the basis of validation scores. At
inference, if the output probability in the task is below the threshold, it is regarded as a non-propaganda
sentence. Propaganda spans are predicted only when the probability is above the threshold.

7Given this task is an auxiliary and multi-label samples (i.e., multi-labels in a same span) are much less common, we
converted them into a single class and discarded the rest.

8To process any type of PLM in the same manner, we inserted original special tokens in the input tokens when no BoS or
EoS tokens were available in the PLM.

9We accidentally dealt with XLNet encoding as “<cls> tokens <sep>,” while the correct form is “tokens <sep> <cls>.” The
experimental results might had been affected, however, it still showed high performance.
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Figure 2: Example of our ensemble method. We employ stacking and cross-validation. Note that this
figure shows only two PLMs and two hyperparameter sets.

4.2 TC Model

Figure 1b shows an overview of the proposed TC model. In TC, given a propaganda span, we predict
propaganda technique(s) for each span.10

Propaganda Span Representation: To produce a propaganda span representation, we provide two
distinct FFNs, feeding input representation h

(tc)
i , that were obtained in the same manner as the SI model.

One of the two FFNs is for the BoS token and produces sentence representations, and the other is for
tokens in a propaganda span:

e
(tc)
i =

 FFN(tc_bos)
(
h
(tc)
i ⊕ φ

)
if i is a BoS token

FFN(tc)
(
h
(tc)
i

)
else

where h
(tc)
BoS is a sentence representation obtained from the BoS token. The propaganda span representa-

tion is obtained by concatenating the representation of the BoS token (e(tc)
BoS), tokens located at span start

(e(tc)
start) and end (e(tc)

end), and representations aggregated by attention (e(tc)
att ) and maxpooling (e(tc)

maxp) in the
span as follows.

e(tc_span) = e(tc)
BoS ⊕ e(tc)

start ⊕ e(tc)
end ⊕ e(tc)

att ⊕ e(tc)
maxp,

Classifier and Objective: We provide an additional label-wise FFN and linear layer to extract label-
specific information for each propaganda technique before prediction:

ŷ
(tc)
` = σ

(
v
(tc)
`
>FFN(tc)

`

(
e(tc_span)

)
+ b

(tc)
`

)
,

where v
(tc)
` and b

(tc)
` are trainable parameters, and ` denotes a technique label such as flag-waving.

Since TC is a multi-label problem, we provide a binary cross-entropy loss for each class. Similar to
Da San Martino et al. (2019), we assign weight to a loss according to the proportion of positive samples
to deal with class imbalance. After training, we multiply the output probability for each label on the
basis of the validation scores automatically. At inference, we sort predicted labels for each sentence in
descending order and assign labels according to the order in a multi-label span.11

10There are 14 possible labels: appeal to authority, appeal to fear-prejudice, bandwagon, reductio ad hitlerum, black-and-
white fallacy, causal oversimplification, doubt, exaggeration, minimization, flag-waving, loaded language, name calling, la-
beling, repetition, slogans, thought-terminating clichés, or whataboutism, straw men, red herring. Refer to the task description
paper (Da San Martino et al., 2020) for more details.

11This is because the number of labels in a span was given in TC.
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4.3 Ensemble with Stacking

We propose an ensemble strategy based on the concept of stacked generalization (Wolpert, 1992).
Stacked generalization feeds prediction results (i.e., output probabilities from classifiers) into a meta-
estimator and trains the estimator with gold labels. In this study, the keys are hyperparameter search and
cross-validation. The simplified training procedure of the ensemble model can be found in Figure 2.

In the procedure for model training, for either the SI and TC, assume we have k-fold cross-validation,
NH hyperparameter sets, and NP PLMs. A hyperparameter set includes the dropout ratio and learning
rate. For each hyperparameter set, we fine-tune the SI or TC models with training folds without using the
validation fold. Therefore, NP × k models for each hyperparameter set are generated. To select better
models, we use only the top NHT hyperparameter sets on the basis of the validation score, resulting in
NHT × NP × k models. For example, as in Figure 2, NHT = 2, NP = 2 (i.e., BERT and XLM), and
k = 3.

In the meta-estimator training procedure, we train a linear model (i.e., classifier or regressor) on the
basis of the outputs of the fine-tuned SI or TC models. First, we predict the validation fold in the
training data through the fine-tuned model. By concatenating the predicted validation folds for each
hyperparameter set, the representative out-of-folds of each hyperparameter set are organized. This means
that we have meta-features D ∈ Rd×NHT to train the meta-estimator, where d is the size of the training
data.

In the test procedure, we predict test labels with the fine-tuned models in the top hyperparameter sets
that were selected in the training step. The predicted labels are then fed into the trained meta-estimator,
obtaining final predictions.
Meta-Estimators: We employ the ridge classifier (Hoerl and Kennard, 1970) implemented in scikit-
learn (Pedregosa et al., 2011) for the meta-estimator. We estimate that even with a naive linear model, the
final outputs are generally more robust and accurate. We provided the meta-estimators for the sentence-
level task in SI, BIO classification in SI, and all TC labels. The meta-estimators of the sentence-level
task and TC labels receive the output probabilities of the corresponding labels as input representations.

5 Experiments

Implementation Detail: All SI and TC models were implemented with PyTorch (Paszke et al., 2019)
and Hugging Face’s transformer library (Wolf et al., 2019). Layer attentions were applied for the last
eight layers in all PLMs, employing dropout. CRF classifiers were implemented using pytorch-crf 12. At
training, we split the network into two parameter groups: one for the parameters of PLM and one for all
other non PLM parameters, applying discriminative fine-tuning (Kondratyuk and Straka, 2019). We froze
PLM parameters for the first few epochs to improve training stability. Adam optimizer (Kingma and Ba,
2015) was used as an optimizer. We applied a 10% and 5% linear learning rate warm-up for all epochs
for SI and TC, respectively.
Submitted System: We employed only the official training dataset to train our model. For the SI
submission, we generated 24 hyperparameter sets for each PLM, and the top 3 sets chosen on the basis of
the validation score for each PLM were used for the stacked generalization. For the TC submission, the
top 11 sets amongst 60 hyperparameter sets were used.

Fixed hyperparameter values are shown in Table 1. The tunable hyperparameter set included learning
rates and the dropout ratio for the FFNs and BiLSTMs. Optuna (Akiba et al., 2019) was used to generate
hyperparameter sets.

The hyperparameter search results for the optimal learning rates are shown in Table 2. Generally,
learning rates of non-PLM parameters are larger than those of PLM parameters. Interestingly, most of
the learning rates for TC were lower than for SI. This insight suggests that complicated models such as
PLMs with BiLSTMs require a larger learning rate to produce a better model.
Metrics: Overlap-based F1 scores for SI and micro-averaged F1 scores for TC were employed in the
shared task. Refer to (Da San Martino et al., 2020) for more details.

12https://pypi.org/project/pytorch-crf/
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hyperparameter SI TC
cross-validation folds (k) 5 6
PoS embedding dim 50 50
NE embedding dim 50 50
BiLSTM dim, layers 600, 2 -
PLM layer dropout 0.1 0.1
FFN(si_bio) dim 200 -
FFN(si_tech) dim 200 -
FFN(si_sent) dim 500 -
FFN(tc_bos) dim - 200
FFN(tc) dim - 500
FFN(tc)

` dim - 500
FFN activation ReLU ReLU
λ 0.5 -
Adam β1, β2 0.9, 0.999 0.9, 0.999
gradient clipping 5.0 5.0
epochs 18 30
PLM frozen first epochs 2 1
batch size 6 5

Table 1: Hyperparameter values

model with PLM PLM parameters
(SI / TC)

non PLM parameters
(SI / TC)

BERT 3.7e-6 / 1.0e-6 3.5e-4 / 1.6e-4
GPT-2 1.8e-5 / 1.2e-5 5.4e-4 / 5.0e-5
RoBERTa 2.9e-6 / 1.9e-6 2.8e-4 / 1.0e-4
XLM-RoBERTa 4.4e-6 / 1.7e-6 7.3e-4 / 7.0e-5
XLNet 4.1e-6 / 2.7e-6 7.3e-4 / 1.5e-4
XLM 3.0e-6 / 6.9e-6 8.9e-5 / 1.5e-4

Table 2: Suggested learning rates

team SI (ranking) TC (ranking)
Hitachi (ours) 51.551 (1) 61.732 (3)
ApplicaAI 49.153 (2) 62.067 (1)
aschern 49.100 (3) 62.011 (2)
LTIatCMU 47.663 (4) -
UPB 46.060 (5) 54.302 (19)
Solomon 40.683 (15) 58.939 (4)
newsSweeper 42.209 (13) 58.436 (5)

Table 3: Official F scores for test set. We show
only top 5 teams for each subtask. Bold and
underline scores show first and second ranked re-
sults, respectively.

model SI TC
ensemble all 49.386 64.628
ensemble only w/ BERT 46.734 59.454
ensemble only w/ GPT-2 44.161 57.761
ensemble only w/ RoBERTa 49.326 62.841
ensemble only w/ XLM-RoBERTa 47.371 61.524
ensemble only w/ XLNet 47.876 63.406
ensemble only w/ XLM 44.688 60.960
ensemble w/o BERT 48.583 64.440
ensemble w/o GPT-2 48.920 63.688
ensemble w/o RoBERTa 48.065 64.346
ensemble w/o XLM-RoBERTa 49.028 63.688
ensemble w/o XLNet 48.838 63.782
ensemble w/o XLM 49.095 64.911

Table 4: Ablation study on development set

5.1 Results

Table 3 shows the official test results of the top-performing teams for SI and TC. Our proposed SI model
outperformed all the other teams with an improvement of more than 2 points. Our team was ranked third
for TC; however, the performance of the top three teams seemed to be almost the same.

On the Role of PLMs: To show the role of PLMs, we show the ablation results for each PLM in Table 4.
In the table, we show the performance for the development data. The table shows that RoBERTa and
XLNet were generally the best performing models. Given that RoBERTa is a carefully tuned model
based on BERT, this result is reasonable. Interestingly, the table also shows that using all PLMs in an
ensemble was better in most cases. For example, while the GPT-2-based model itself is not a better
model for both SI and TC, excluding the GPT-2-based model results in worse performance. This result
suggests that stacked generalization was effectively applied.

PLM Layer Weight: Comprehensive overviews of fine-tuned PLM states are shown in Figure 3, visu-
alizing weights of PLM layers (Clark et al., 2019). The figure illustrates that the last several layers were
generally weighted. GPT-2 and XLNet interestingly show different distributions, ranging widely.

On the Importance of Learning Rate Tuning: Through hyperparameter tuning, we found that tuning
a PLM learning rate is essential to elicit better results. We show Figure 4 and Figure 5, visualizing the
learning rate space for the two parameter groups, that is, PLM parameters and non-PLM parameters. We
found that the SI models required tuning for either group, while the TC models required the tuning of
PLM parameters rather than non-PLM parameters. We attribute this to the complexity of SI models. SI
models employ BiLSTM-CRF in PLMs, and BiLSTMs are complicated when compared with FFNs in
TC. Therefore, SI training requires a higher learning rate for either group. TC models use only FFNs in
PLMs and therefore require a lower learning rate for non-PLM parameters.
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Figure 3: Attention weight visualization for last eight layers in PLMs
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Figure 4: Negative SI validation scores in learning rate space, where X-axis shows learning rate for
non-PLM parameters, and Y-axis shows PLM parameters. Each point indicates searched hyperparameter.
Note that brighter colors indicate better performance.
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Figure 5: Negative TC validation scores in learning rate space

6 Conclusion

We detected propaganda by leveraging heterogeneous pre-trained language models. The results sug-
gested that employing heterogeneous pre-trained language models could result in better performance.
Future work includes examining more effective methods for utilizing heterogeneous pre-trained language
models.
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