Teéxtmarkers at SemEval-2020 Task 10:
Emphasis Selection with Agreement Dependent Crowd Layers

Kevin Glocker and Stefanos Andreas Markianos Wright
Department of Linguistics
University of Tiibingen

{kevin .glocker, stefanos—andreas .markianos—wright}@student .uni-tuebingen.de

Abstract

In visual communication, the ability of a short piece of text to catch someone’s eye in a single
glance or from a distance is of paramount importance. In our approach to the SemEval-2020
task “Emphasis Selection For Written Text in Visual Media”, we use contextualized word rep-
resentations from a pretrained model of the state-of-the-art BERT architecture together with a
stacked bidirectional GRU network to predict token-level emphasis probabilities. For tackling
low inter-annotator agreement in the dataset, we attempt to model multiple annotators jointly by
introducing initialization with agreement dependent noise to a crowd layer architecture. We found
our approach to both perform substantially better than initialization with identities for this purpose
and to outperform a baseline trained with token level majority voting. Our submission system
reaches substantially higher Match,,, on the development set than the task baseline (0.779), but
only slightly outperforms the test set baseline (0.754) using a three model ensemble.

1 Introduction

Emphasis selection is the task of choosing individual words or phrases of short written texts to emphasize.
While emphasis selection has also been used in previous work for more natural articulation in text-to-
speech systems (Mass et al., 2018), in the SemEval shared task emphasis annotations are intended for use
in visual communication such as in posters or advertisements (Shirani et al., 2020).

Word emphasis helps readers conveniently scan for important information in a text. Capital letters,
bold letters, italics and underlines can help emphasize certain facts and drive the message home; however,
overuse of these features can lead to confusion and create an unattractive aesthetic. Usually advertisers
focus on one or two key words or phrases that will pique the readers’ interest (Shirani et al., 2019).

As with many tasks based on sentence modeling, substantial improvements have been gained in
emphasis selection by leveraging recent breakthroughs in language modeling such as the ELMo architec-
ture (Peters et al., 2018; Shirani et al., 2019). Following this trend, our submission uses contextualized
word representations from a pretrained model of the state-of-the-art BERT architecture (Devlin et al.,
2019) together with a stacked bidirectional GRU network for learning task specific information.

A major challenge when developing a system for automatic emphasis selection are very low agreements
between annotators about which parts of a sentence should be emphasized which impacts how models
are trained and evaluated (Mass et al., 2018; Shirani et al., 2019). To tackle annotator subjectivity, both
majority voting (Mass et al., 2018) and regression with a KL divergence objective (Shirani et al., 2019)
have been used for training in previous work. In our approach, we apply a crowd layer architecture
adapted from Rodrigues and Pereira (2018) and improve its effectiveness for the task by introducing
agreement dependent noise during initialization.

2 Data

A combination of two English datasets was provided for this task (Shirani et al., 2020). In total, the
training and development sets comprise of 3,106 short text instances (sentences).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1698

Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1698—1703
Barcelona, Spain (Online), December 12, 2020.

Both datasets consist of tokenized sentences with annotations by nine different annotators for each
token using an inside—outside—beginning (IOB) tagging scheme. This is a scheme whereby tokens are
tagged as either I when inside an emphasized chunk, B when at the beginning of a chunk or O when
outside of a chunk (Ramshaw and Marcus, 1995). The frequencies of the IOB tags are then counted and
the sum of the B and [tags is divided by the number of annotators for each token. This then indicates the
emphasis probability which is used for evaluation (Shirani et al., 2019; Shirani et al., 2020). The tokens
with the highest probability score are more likely to be the appropriate candidates for emphasis.

The first dataset is from Adobe Spark, and contains 960 short text instances from flyers, posters,
advertisements or motivational memes on social media. It contains 5,940 tokens and the average number
of tokens per instance is 6.18, ranging from 1 to 27 tokens. The average emphasis probability per token
is 0.38. The second dataset is a collection of quotes from well-known authors collected from Wisdom
Quotes containing 2,174 short texts. It contains 30,845 tokens and the average number of tokens per
instance is 14.18, ranging from 3 to 38 tokens. The average emphasis probability per token is 0.26.

The Light’s Kappa (Light and Smith, 1971) between all raters in the task training set is 0.23. In
comparison, the kappa agreement between the four professional labelers in the speech emphasis dataset
used by Mass et al. (2018) for an expressive text-to-speech system is only slightly higher at 0.35. This
suggests that emphasis annotations are very subjective and that this is a common issue across domains
which is important to tackle in order to achieve good system performance.

3 System

BiGRU Layers Feedforward Layers

(N (\ for Each Timestep Majority Voting
)

° an Vs Ve N N e Ve N S [Softmax]
g) g g
é £ ? g Crowd L

= A A rowd Layer
-] = =}
2 I Bllal| HIIBR]]]2
S | |BERT| | o SUEE|| 213 & (___Shared Softmax]
ARSI [
=) = =
L ez O O 8 o Annotator Weights
§ _J 3 3 and Softmax x9

U U — S —

\ J J X2

Figure 1: Schematic of our architecture with its three variants differing in the final layers: majority voting,
crowd layer and an optional attention layer before the crowd layer. In the variants using a crowd layer, the
output of the shared softmax is used directly at inference time.

Our neural network architectures make use of state-of-the-art language modeling of the input sentences
by using pretrained BERT embeddings (Devlin et al., 2019) followed by a bi-directional GRU layer (Cho
et al., 2014) with a feedforward network for each time step for modeling task specific information. The
architecture and its variants are illustrated in Figure 1.

Since the BERT model we use was trained on WordPiece tokens (Devlin et al., 2019; Wu et al.,
2016), token boundaries in the pre-tokenized training data are very different in some cases. While token
boundaries are generally similar for highly frequent words, WordPiece splits up words which are rare
or were not present in the training data into smaller subword units (Wu et al., 2016). To accommodate
for this, we construct word vectors for the original tokens in the data by further tokenizing each token
separately into its subword units following the same WordPiece segmentation rules as in the pretrained
model. The subword units for each of the original tokens are then concatenated to form the entire sentence
and passed into the BERT embedding model where contextualized word representations are extracted
from the final hidden states. Finally, we compute a single vector representation for the original tokens

1699

by applying max pooling over the subword vectors which we found to work slightly better than mean
pooling in preliminary experiments.

For modeling task specific information we then feed the resulting vectors into a component-level
dropout layer (Srivastava et al., 2014) for regularization after which they are passed into a bidirectional
RNN layer. While LSTMs are the preferred RNN cells in previous work (Rodrigues and Pereira, 2018;
Shirani et al., 2019), we achieved slightly higher scores using GRU cells instead which also have the
added benefit of being faster to train due to their simplified gating mechanism (Cho et al., 2014). We
use a stack of two bidirectional GRU (BiGRU) layers, apply dropout between layers as regularization
and use learned matrices as the forward and backward initial states instead of using zero states for minor
performance improvements.

The forward and backward hidden states of the last GRU layer are then concatenated into single
vectors for each token in a sentence and passed into a feedforward network. Our feedforward layers
are pre-activated by the tanh function. For regularization, all feedforward layers are preceded by layer
normalization followed by dropout inspired by IC-layers (Chen et al., 2019). The final feedforward layers
are additionally followed by another pair of layer normalization and dropout and a ReLU activation.

Similarly to Shirani et al. (2019), we also tested an architectural variant which includes an attention layer
over final feedforward layer outputs where scores are computed via Bahdanau-style attention (Bahdanau
et al., 2014) between each output vector and the mean of all output vectors in the sentence:

N
«; = softmax (vT tanh (Wfi + U;fo])) (1)

=0
¢ = fioy (2)

Here, f; is the output of the feedforward network at time step ¢, IV is the number of words in a sentence,
W and U are learned weights of single vectors and the mean of all vectors in the sentence respectively,
and ¢; is the product of an output vector f; with its corresponding attention weight «;.

We primarily experimented with two techniques for dealing with labels from different annotators. As a
baseline, we used a single softmax activated projection layer trained on labels obtained via token level
majority voting and optimized with a cross-entropy objective. In our second approach, we attempt to
model consensus between annotators in the dataset explicitly in a shared representation by parameterizing
the annotators using a crowd layer (Rodrigues and Pereira, 2018).

3.1 Crowd Layer

Our version of the crowd layer is based on the work of Rodrigues and Pereira (2018) who introduce
learned weight matrices for each annotator applied to a shared softmax-activated projection layer to model
reliability and biases in the context of learning from crowdsourced datasets.

Our version of the crowd layer uses a shared projection layer activated with a log softmax for numerical
stability which is replaced by a regular softmax at inference time for retrieving emphasis probabilities.
During training, we add a weight matrix for each annotator which transforms the shared log probabilities
to account for e.g. biases before applying a second softmax to turn the weighted probabilities into valid
distributions. We then use a cross-entropy objective for training the annotator level projection layers on
the raw IOB labels in the training set.

The primary difference between our version and the original crowd layer is our initialization of the
annotator weight matrices. Rodrigues and Pereira (2018) found that in the context of crowdsourced
datasets, initializing weights to identity matrices worked best. The very low agreement between annotators
in the task data indicates that cases where transformations of the shared probabilities are ideally close
to identities for most or all annotators might be much less likely. Motivated by this assumption, we
experimented with adding normal noise to identity matrices for initialization instead. Empirically, we
found that the best performance can be achieved by using a mean of 0 and a standard deviation setto 1 — x
where k indicates the average Light’s Kappa (Light and Smith, 1971) between annotators in the training
set. As a result, initialization is close to the original identity initialization in datasets with high agreement

1700

but closer to the standard normal with low agreement as is the case in the task dataset. Conceptually,
this can be interpreted as making the assumption that more biases or noise have to be accounted for with
increasing disagreement in the data for which noisy initializations are better starting points.

4 Evaluation

Our models were implemented in Python with the PyTorch framework! (Paszke et al., 2019). We used
the pre-trained cased BERT model (“Bert-cased”) from Devlin et al. (2019) as implemented in Python in
the “transformers” library2 (Wolf et al., 2019) with which we compute 768-dimensional contextualized
word embeddings together with our pooling approach described in Section 3. In all models we used two
BiGRU layers with 250 neurons each and 2 feedforward layers with 150 neurons each.

For the crowd layer we tested three different initializations of the annotator weights which vary by the
standard deviation (o) of normal noise added to identity matrices to investigate the effectiveness of our
approach. We trained models using identities without noise (¢ = 0) as in Rodrigues and Pereira (2018), a
standard normal distribution (¢ = 1) and our agreement dependent approach (o = 0.77).

For regularization, we used dropout rates of 0.1 on the input and 0.2 for all other dropout layers between
biGRU and feedforward layers. Our networks were trained using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 0.001 and training was stopped after two epochs of no improvement on
development set loss.

In addition to single models, we also evaluated some simple ensembles of different architectural variants.
Scores from ensembles were obtained by averaging output probabilities of the constituent models for each
token. We compare scores using the Match,,, metric with m € {1...4} which was used as the evaluation
metric for the shared task (Shirani et al., 2019; Shirani et al., 2020).

5 Results

Match,,, scores
Model Development Set Test Set

1 2 3 4 Average 1 2 3 4 Average

Task Baseline

(Shirani et al., 2019) 059 075 0.8 0.82 0.7424 0.61 0.74 0.81 0.85 0.75

BERT Models
Majority Voting 0.63 0.75 0.8 0.83 0.7545 0.59 0.72 0.79 0.84 0.7352
Crowd Layer (o = 0) 0.57 0.73 0.81 0.84 0.7385 0.55 0.72 0.8 0.84 0.7262
Crowd Layer (o = 1) 0.56 0.72 0.79 0.82 0.7233 0.54 0.71 0.8 0.83 0.7192

Crowd Layer (0 = 0.77) 0.64 0.77 0.81 0.84 0.7652 0.57 0.75 0.81 0.84 0.7429

Crowd Layer + Attention 0.61 0.76 0.82 0.84 0.7584 0.59 0.74 0.81 0.85 0.7459
BERT Ensembles

Majority, Crowd 0.65 0.77 0.81 0.85 0.7724 0.6 0.74 0.8 0.85 0.748

Majority, Crowd, Attention 0.67 0.78 0.83 0.84 0.7786 0.6 0.75 0.81 0.85 0.7535

Table 1: Evaluation results for our single models and ensembles on the development and test sets using the
Match,,, metric. The highest scores in each column are marked in bold and the name of our submission
model in italics.

Table 1 shows Match,,, for all values of m as well as their averages on the development and the test
splits of the task dataset. The model using our version of the Crowd Layer with agreement dependent
initialization (¢ = 0.77) and without the attention mechanism substantially outperformed both the
task baseline and our majority voting model on the development set by a margin of ~0.01. While still

'"https://github.com/pytorch/pytorch/releases/tag/v1.4.0
https://github.com/huggingface/transformers/releases/tag/v2.5.1

1701

outperforming both baselines on the development set, adding an attention mechanism to our architecture
decreased performance compared to our Crowd model without attention. However, on the test set it
slightly improved performance making it our highest scoring single model in this context while still
reaching a slightly lower score than the baseline by a margin of ~0.0041.

Both identity and standard normal initializations of the crowd layer reach much lower scores than
agreement based initialization and are even outperformed by our majority voting baseline. This highlights
the importance of selecting a good starting point when training models with this architecture. We found
that improvements over identity initialization could be gained with standard deviations until o = 0.77
which corresponds to the disagreement between annotators. Even more noisy initializations decreased
performance rapidly below that of identity initialization.

Ensembling our Crowd and Majority models lead to a substantially higher score both on the development
and test set. With the further addition of the Attention model we gained another comparatively large score
improvement on both subsets. While most of our models reach higher scores than the baseline on the
development set, only one of our ensemble models outperforms the test set by a much smaller margin
leading to our model ranking 25th in the shared task (Shirani et al., 2020).

Wisdom Quotes Adobe Spark

5 10 15 20 25 30 5 10 15 20 25
Sentence Length Sentence Length

Figure 2: Medians of average Match,,, scores for sentences of the same lengths in both subsets of the
validation set with linear regression lines. In the bottom row the corresponding sentence length frequency
distributions are shown for reference.

We further analyzed performance of our ensemble model on both subsets of the development set and
found that our model scores considerably better on the Adobe Spark subset (0.7842) than on the Wisdom
Quotes subset (0.7755). Investigating scores of sentences of different lengths for both subsets (Figure 2),
we found that while scores and sentence lengths are not very highly correlated in both the Adobe Spark
(R? = 0.13) and Wisdom Quotes (R? = 0.28) subsets in part due to high variance where fewer long
sentences are available, there is a slight overall trend of sentences becoming considerably more difficult to
model for our system with increasing length. Since Adobe Spark primarily consists of very short phrases
with 70% containing fewer than eight words this is a possible explanation of the better scores of our model
on the subset. Further analysis of other factors which potentially lead to significant deviations from the
gold standard emphasis probabilities such as different syntactic constructions and part-of-speech tags
didn’t result in any significant patterns.

6 Conclusion

We presented a GRU-based recurrent architecture for emphasis selection using state-of-the-art language
modeling with BERT and introduced agreement dependent noise initialization to adapt a crowd layer
to modeling annotators for a dataset with very low inter-annotator agreement which we showed to
outperform initializations with only identities or addition of standard normal noise. While our architecture
outperformed the task baseline substantially on the development set only one of our ensemble systems

1702

outperforms it on the test set by a small margin.

Acknowledgements

We would like to thank Cagr1 Coltekin for his advice and support with completing this task.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Guangyong Chen, Pengfei Chen, Yujun Shi, Chang-Yu Hsieh, Benben Liao, and Shengyu Zhang. 2019. Re-
thinking the usage of batch normalization and dropout in the training of deep neural networks. arXiv preprint
arXiv:1905.05928.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In NAACL-HLT.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Richard Light and Paul Smith. 1971. Accumulating evidence: Procedures for resolving contradictions among
different research studies. Harvard educational review, 41(4):429-471.

Yosi Mass, Slava Shechtman, Moran Mordechay, Ron Hoory, Oren Sar Shalom, Guy Lev, and David Konopnicki.
2018. Word emphasis prediction for expressive text to speech. In INTERSPEECH.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024—8035. Curran Associates, Inc.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text chunking using transformation-based learning. CoRR,
cmp-1g/9505040.

Filipe Rodrigues and Francisco C. Pereira. 2018. Deep learning from crowds. In AAAL

Amirreza Shirani, Franck Dernoncourt, Paul Asente, Nedim Lipka, Seokhwan Kim, Jose Echevarria, and Thamar
Solorio. 2019. Learning emphasis selection for written text in visual media from crowd-sourced label distri-
butions. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
1167-1172.

Amirreza Shirani, Franck Dernoncourt, Nedim Lipka, Paul Asente, Jose Echevarria, and Thamar Solorio. 2020.
Semeval-2020 task 10: Emphasis selection for written text in visual media. In Proceedings of the 14th Interna-
tional Workshop on Semantic Evaluation.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929—
1958.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-
art natural language processing. ArXiv, abs/1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

1703

