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Abstract

This paper describes the system Clustering on Manifolds of Contextualized Embeddings (CMCE)
submitted to the SemEval-2020 Task 1 on Unsupervised Lexical Semantic Change Detection.
Subtask 1 asks to identify whether or not a word gained/lost a sense across two time periods.
Subtask 2 is about computing a ranking of words according to the amount of change their
senses underwent. Our system uses contextualized word embeddings from MBERT, whose
dimensionality we reduce with an autoencoder and the UMAP algorithm, to be able to use a
wider array of clustering algorithms that can automatically determine the number of clusters. We
use Hierarchical Density Based Clustering (HDBSCAN) and compare it to Gaussian Mixture
Models (GMMs) and other clustering algorithms. Remarkably, with only 10 dimensional MBERT
embeddings (reduced from the original size of 768), our submitted model performs best on subtask
1 for English and ranks third in subtask 2 for English. In addition to describing our system,
we discuss our hyperparameter configurations and examine why our system lags behind for the
other languages involved in the shared task (German, Swedish, Latin). Our code is available at
https://github.com/DavidRother/semeval2020-task1

1 Introduction

With the advent of increasingly sophisticated distributional models, semantic change analysis has gained
considerable popularity in natural language processing. Earlier methods use static word embeddings to
identify laws of semantic change (Hamilton et al., 2016a; Hamilton et al., 2016b; Eger and Mehler, 2016).
Recently, contextualized embeddings (Devlin et al., 2018) have allowed to track more fine-grained sense
changes of words over time (Hu et al., 2019).

The SemEval-2020 “Unsupervised Lexical Semantic Change Detection task” (Schlechtweg et al., 2020)
aims at two levels of granularity to detect lexical semantic change: 1) a binary classification task to
identify whether or not a word lost/gained a sense between two time periods, and 2) a ranking task, where
a list of words has to be ordered by the amount of change these have undergone between the same two time
periods. Both subtasks have to be solved for four languages: English, German, Latin and Swedish. To
address the tasks, we deploy a language-agnostic system with three ingredients. i) We represent words by
multilingual contextualized word embeddings (MBERT) (Devlin et al., 2018). ii) We apply dimensionality
reduction on the contextualized word embeddings with an autoencoder and the UMAP algorithm (a type
of manifold learning), as it is much easier and more efficient to work with low dimensional vectors in
subsequent steps, allowing the application of a wider range of clustering algorithms. iii) We employ a
hierarchical clustering approach to find potential ‘sense clusters’ for each word. These sense clusters can
then be used to find sense losses or gains and shifts in the sense distribution between two time epochs.

While our system ranks in the mid-field overall, we perform best for English in subtask 1 and third in
subtask 2. While we can only speculate about the approaches of the other participants, we believe this to
be due to our language-agnostic approach, which uses no language-specific resources whatsoever except
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for large-scale contextualized embeddings, possibly limiting its success in lower-resource languages such
as Latin. Our analysis further suggests that hyperparameter tuning would have been crucial for better
performances in Swedish and German.

2 Task Specification

English German Swedish Latin

Epoch t1 1810-1860 1800-1860 1790-1830 -200-0
Epoch t2 1960-2010 1946-1990 1895-1903 0-2000

#tokens t1/t2 6M / 6M 70M / 72M 71M / 111M 1.7M / 9.4M
#Focus words 37 48 31 40

Table 1: Corpus Overview Statistics

We aim to detect word sense change for given lemmatized focus words in English, German, Swedish
and Latin. For each involved language, the task organizers supply a corpus for two epochs; statistics
are given in Table 1. Note that the corpus sizes vary considerably across the languages, with Latin
being smallest in size. The manual annotation of the test data against which all systems were eventually
evaluated was done by human experts according to the guidelines by Schlechtweg et al. (2018). Annotators
were asked to label focus words with one of several discrete senses. The precise definition of the subtasks
of the shared task is the following:

• Subtask 1 is a binary classification task to identify whether or not a word lost/gained a sense between
two time periods t1 and t2, i.e., if it underwent meaning change or not. By the task organizers’
specification, a sense counts as lost/gained if it occurs at least n = 5 times in t1 (t2) and at most k = 2
times in t2 (t1) (Latin had n = 2 and k = 0, respectively).

• Subtask 2 asks to rank a list of words by the amount of change they have undergone between t1 and t2.
For the test data, a ranking was determined according to the Jensen-Shannon Distance (JSD) between
the distribution of senses between both epochs for each word. Ultimately, the fit of the system is
computed by calculating the Spearman rank correlation between the model output and the gold ranking.

3 System Overview

To build a system that accomplishes these tasks, we use a pre-trained deep language model in order to
have a meaningful and rich representation of words that is sensitive to the respective context. We then
employ unsupervised clustering algorithms to combine the different representations and additionally try
dimensionality reduction methods to boost clustering performance.

In our submission we use a pipeline that implements those steps. The language model we use is
MBERT from which we retrieve contextualized word embeddings of the focus words from its last layer.
We subsequently perform dimensionality reduction by first training and applying an AutoEncoder model
on the data and then apply the UMAP algorithm afterwards. For the purpose of finding the different sense
clusters we use Hierarchical Density Based Clustering (HDBSCAN) as a last step.

For illustration, we plot the instances for the word ‘chairman’ in Figure 1. Our clustering finds
two distinct senses which corresponds to the annotation in WordNet (Fellbaum, 2012). The official
competition scores of our submission are shown in Table 2, and Table 4 lists the hyperparameter settings
of this submitted system. In Table 3 we report results with optimized hyperparameters on the post-
evaluation data, comparing the clustering algorithms HDBSCAN and an alternative GMM approach.
When the best configuration is known, we become more competitive overall (taking into account that the
competing systems likely also improve when tuning their hyperparameters). In the following, we describe
the steps of our pipeline. Further results from the post-evaluation are reported in the respective sections.
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3.1 Contextualized Embeddings

First, we compute contextualized embedding vectors (d = 768) from MBERT’s last layer for each focus
word within its sentential context. Our intuition is that senses are represented by vectors with a small
cosine distance to each other since they occur in similar contexts. We use the bert-base-multilingual-cased
model of Huggingface (Wolf et al., 2019) that was trained on 104 languages and 110M parameters.
MBERT is attractive because it a) is available for all shared task languages; b) can disambiguate on a sense
level (Coenen et al., 2019); c) has shown strong performance across multiple NLP tasks. We perform
no fine-tuning (e.g., on the historical data), as previous research found that this may lead to decreased
performances in small data scenarios (Giulianelli, 2019).

Additionally, since the backbone of our pipeline are contextualized embeddings, one possible source
for errors is the quality of the embeddings. We also test our system with XLM-R (Conneau et al., 2019)
embeddings, but the final results of the system do not systematically improve.

(a) Visualization of the UMAP projected auto encoded
MBERT embeddings of the word ‘chairman’ in two-
dimensional space. Embeddings from both epochs are
scattered throughout the same areas.

(b) Example clustering result of the HDBSCAN algorithm.
Two distinct senses are detected based on connectivity and
density of the two regions.

Figure 1: Two-dimensional visualization for the instances of the word ‘chairman’, according to (a) their
time epochs and (b) the sense clusters as found by HDBSCAN.

Ours Best System
English subtask 1 .730 .730

subtask 2 .440 .458
German subtask 1 .542 .812

subtask 2 .412 .735
Swedish subtask 1 .613 .774

subtask 2 .114 .604
Latin subtask 1 .450 .725

subtask 2 .109 .513
All subtask 1 .584 .687

subtask 2 .269 .527

Table 2: Best results of our system vs. best
performance of any system for subtask 1 (mea-
sured in accuracy) and subtask 2 (measured in
Spearman’s ρ).

GMM HDBSCAN
English subtask 1 .622 .730

subtask 2 .306 .512
German subtask 1 .729 .625

subtask 2 .605 .604
Swedish subtask 1 .742 .806

subtask 2 .268 .308
Latin subtask 1 .575 .525

subtask 2 .321 .227
All subtask 1 .667 .671

subtask 2 .375 .413

Table 3: Aggregated best results after hyper-
parameter optimization on the test set (post-
evaluation) for both subtasks per language for
the clustering methods HDBSCAN and GMM.
No model performs best across all languages
individually.
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English German Swedish Latin

UMAP: Number of neighbors 6 6 5 3
HDBSCAN: Cluster size ratio .03 .06 .025 .01

Table 4: Final hyperparameter configuration for UMAP and HDBSCAN in the best run of the competition
submissions: Number of neighbors for UMAP and the cluster size ratio configuration for HDBSCAN.

3.2 Dimensionality Reduction
We reduce the dimensionality of the vectors with two methods in conjunction: (i) An autoencoder, and (ii)
the UMAP algorithm (McInnes et al., 2018), a type of manifold learning similar to t-SNE. We choose the
same autoencoder setup as previous literature (McConville et al., 2019) with dimensions of the layers
[d, 500, 500, 2000, 20] for the encoder, where d = 768 in our case, and mirrored dimensions for the
decoder; the compressed dimensionality is thus 20. Using UMAP, we reduce this further down to 10.
UMAP is a method for general purpose dimensionality reduction that uses local manifold approximations
to construct a topological representation of high dimensional data. We decided to use UMAP over t-SNE
and PCA as it scales nicely in computation time with the amount of data and produces a better resulting
embedding. Additionally, McConville et al. (2019) showed that using an autoencoder before UMAP leads
to higher quality clustering and that their approach in combination with a standard clustering approach
is competitive with other unsupervised deep learning clustering method and Reif et al. (2019) found
that MBERT embeddings projected with UMAP produces distinct clusters of different word senses.
Furthermore, there is ample evidence that cosine similarity is the superior metric over Euclidian distance
to calculate the similarity of semantic vectors. We incorporate this into our system by using the cosine
metric to project our data with UMAP, i.e., preserving the cosine similarity between vectors. Another
advantage of using the lower dimensional embeddings is that this allows the use of different clustering
methods such as HDBSCAN, for which high input dimensionality is prohibitive.

Our final hyperparameter configuration of UMAP for each language used six neighbours for English and
German, five for Swedish and three neighbours for Latin, as shown in Table 4. The number of neighbours
dictates how many points the algorithm groups with any other point on the embedding manifold and are
thus closer. Other hyperparameters include the minimal distance (0.0) between points in the embedding
space, which should only be greater than zero for visualization purposes, and the number of components
(which we set to 10). The 10 dimensional vectors are then fed to the subsequent clustering step.

In the post-evaluation, we tested the influence of the dimensionality reduction methods with an ablation
study by changing modules in the pipeline, while keeping the same hyperparameters. We compare two
settings against the submitted system. First, we omit the autoencoder and only use UMAP in combination
with HDBSCAN. Second, we omit dimensionality reduction altogether and only use GMM clustering
(n clusters = 5) on the high dimensional data (since HDBSCAN cannot cluster such high dimensional
data). We notice that peak performance is barely affected across the setups, but find that additional
dimensionality reduction steps improve average performance, while standard deviation becomes more
narrow. This indicates that the dimensionality reduction contributes to the stability of the system overall.

3.3 Clustering & Measuring Lexical Semantic Change
We mainly compare two different clustering approaches: (i) Gaussian Mixture Models (GMM) (Reynolds,
2009) and (ii) Hierarchical Density-based clustering (HDBSCAN) (McInnes et al., 2017). We also
experimented with a non-hierarchical DBSCAN (Ester et al., 1996) and BIRCH (balanced iterative
reducing and clustering using hierarchies) (Zhang et al., 1997). However, non-hierarchical DBSCAN
is very sensitive to scale since its hyperparameter epsilon (maximum distance between two points) is a
fixed value. BIRCH tended to find too many marginally small clusters that would be treated as noise and
had too many hyperparameters overall. In contrast, HDBSCAN, while also hierarchical, has only one
hyperparameter.
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To retrieve distinct senses for a particular word, all instances for this word in one time epoch are fed as
10 dimensional vectors to different clustering algorithms. An important problem in the given setting is the
missing information on the amount of senses. These can be either heuristically set to a fixed number (as
for GMM) or inferred via structure learning where a likelihood score for a model on the data given some
complexity penalty is optimized (as for HDBSCAN).

As a result of the clustering, each word occurrence is assigned a cluster index, which represents a sense
label in our case. For the classification task of whether a sense has been lost/gained or not, we look at all
cases where a cluster has at most k contextualized vectors from one time epoch. If that cluster has at least
n vectors from the respective other epoch, we say that a sense change has occurred. For subtask 2, we
compute, for each word and time epoch, the relative frequency profile of its contextualized embeddings in
different clusters. We then compute Jensen-Shannon Distance between the two distributions corresponding
to both time epochs and rank words by this metric. An important decision in this model is to handle all
points classified as noise as one sense cluster. This decision is based on the assumption that the model
could have missed a change if in one epoch there is considerably more noise than in the other.

GMM: GMMs belong to a class of probabilistic models that represent a distribution with many normally
distributed subdistributions. GMMs use a fixed amount of clusters, where a cluster is represented by its
center in the latent space and covariance structure information. A clustering can then be found by using
the Expectation Maximization Algorithm (Moon, 1996). Since GMMs do not search for the number of
clusters itself, we manually set the number of clusters.

HDBSCAN: HDBSCAN is a spatial clustering algorithm that is well suited to handle arbitrarily shaped
clusters of varying size or density, while also offering mechanisms to automatically identify noise. The
only hyperparameter to set is the minimum ratio of points in a cluster—the fraction of the minimal number
of points that HDBSCAN needs to construct a cluster. HDBSCAN performs clustering based on the
density regions in a dataset and in contrast to the classical DBSCAN algorithm, it is able to find clusters of
varying densities, which might be the case for our sense clusters. An additional benefit is that HDBSCAN
has an inherent notion of noise data points. This helps deal with ‘unnecessary senses’ or other outliers.

#cluster Subtask 1 Subtask 2

3 .547 ± .017 .213 ± .043
5 .536 ± .020 .194 ± .028
10 .514 ± .018 .198 ± .017

Table 5: The average performance on both sub-
tasks of the GMM clustering with different fixed
numbers of clusters. The variance is reported
from 10 runs of the system.

Cluster size ratio Subtask 1 Subtask 2

0.01 .501 ± .006 .176 ± .007
0.02 .518 ± .006 .165 ± .010
0.03 .542 ± .020 .210 ± .023
0.04 .535 ± .025 .191 ± .029

Table 6: HDBSCAN: Effect of the minimum
cluster size ratio on the performance of the
model across different thresholds.

In Tables 5 and 6, we evaluate the impact of hyperparameter choices for both clustering algorithms
on the post-evaluation data. For GMM, this is the number of clusters and for HDBSCAN, this is the
cluster size ratio. The GMM approach does best with three clusters and shows decreasing performance
with an increasing amount of clusters. For HDBSCAN, the optimal cluster size ratio may neither be too
small (to avoid having too many senses) nor too large (to not miss senses with few samples). Furthermore,
while increasing the required minimum cluster size tends to increase performance for both subtasks, the
results show a slightly higher variance, indicating that the model loses robustness with higher values of
the cluster size ratio.

4 Conclusion

Our contribution to the SemEval-2020 “Unsupervised Lexical Semantic Change Detection task” identifies
lexical semantic sense change in an unsupervised, knowledge-free, and language-agnostic manner. It
utilizes contextualized word embeddings to determine implicit sense information from the context of words.
These contextual word vectors are reduced in dimensionality with an autoencoder and UMAP to enable
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clustering with a hierarchical density based clustering (HDBSCAN), which is an appealing clustering
algorithm compared with other, more complex architectures. We found that our chosen hyperparameters
for English yielded good results, and further post-evaluation confirmed this. However, for the other
languages, our hyperparameter configuration was not optimal, as evidenced by improved performance in
post-evaluation with other hyperparameter choices.

Overall, we showed that, for the given task of semantic change analysis, we can achieve best or near-best
performance for one of the shared task’s languages even when massivly condensing the information from
MBERT’s contextualized embeddings, yielding a very time- and resource-efficient solution to the problem
(that has a memory footprint of 1% of the original embeddings after the dimensionality reduction). That
our system has rather mediocre performance for the other languages may also hint at a certain randomness
in the task definition (e.g., w.r.t. the parameters k and n) or as arising from the rather small sizes or
selection of some of the involved corpora or their annotation process.
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