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Abstract

This paper describes the system proposed for addressing the research problem posed in Task 10 of
SemEval-2020': Emphasis Selection For Written Text in Visual Media. We propose an end-to-end
model that takes as input the text and corresponding to each word gives the probability of the
word to be emphasized. Our results show that transformer-based models are particularly effective
in this task. We achieved the best Match,,, score (described in section 2.2) of 0.810 and were
ranked third on the leader-board.

1 Introduction

Visual communication relies on images and short texts, e.g., in flyers, posters, etc. The purpose of these
is to convey the message effectively and without ambiguity. Moreover, they should be able to attract
the reader’s attention within the first few seconds. For text, this can be achieved by laying emphasis on
particular words to convey the intent better. The emphasis selection task is about designing automatic
methods for choosing candidate words to be emphasized in short written texts, to enable automated design
assistance in authoring (Figure 1). The dataset provided for this task is in English, and task description
paper (Shirani et al., 2020) provided by the organizers describes the task, data, evaluation, results, and a
summary of participating systems.

We tried two different approaches for the task. Our BILSTM + Attention approach is inspired by the
baseline paper (Shirani et al., 2019). In this approach, we tweaked the BILSTM layers (Hochreiter and
Schmidhuber, 1997), tried other layers like GRU (Cho et al., 2014), and used character embeddings along
with word embeddings (Lample et al., 2016).

Our Transformers approach involves transfer learning using Transformer based models (Vaswani et al.,
2017). This approach involves two types of models, the first one being a transformer-based model with
the BiLSTM layer, the attention layer (Bahdanau et al., 2014), and fully connected layers on top. The
second type of model involves transformer-based models with fully connected layers. We used BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019), and GPT-2 (Radford et al.,
2019) as transformer-based models. In the end, we tried the homogeneous and heterogeneous ensemble of
these models.

Due to the nature of the problem, the systems which incorporate the whole context of a sentence would
perform better. Further, the small size of the dataset was a bottleneck that can be countered by using
transfer learning via the pre-trained models. Using transformer-based models accounts for both of these
observations.

Our best submission achieved Match,,, score of 0.810 (Match,,, evaluation metric is described in Section
2.2) and was ranked third on the leaderboard. Our submissions under-performed in Score 1 (Match; as
defined in Section 2.2) as compared to the other top-performing teams. Our code is available on Github?.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
* The authors equally contributed to this work.

Uhttps://competitions.codalab.org/competitions/20815
? github.com/SahilDhull/emphasis_selection
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Figure 1: Emphasizing different sets of words

2 Background
2.1 Problem definition

Given a sequence of words or tokens C = {1, 9, ..., T, } in a text, the task is to compute a probabilistic
score S; for each x; which indicates the degree of emphasis to be laid on the word.

2.2 Evaluation Metric

The evaluation metric for our problem is defined as follows:

For a given m (from 1 to 4), we first define 2 sets, Sr(,ff ) _ set of m words with top m probabilities

)
predictions. To get Sﬁf ), each word in the sentence has been manually annotated by 9 annotators using
Amazon Mechanical Turk. More details regarding the same can be found in the baseline paper (Shirani et

al., 2019).
Based on these 2 sets, we define Match,,, as

according to ground truth and 5’,(5 - set of m words with top m probabilities according to model

Swcnpn | S90S | fmin(m, |z |)

Match,, =
arclim ’Dtest‘

where Dy, is the dataset and x is text instance. We find Match,,, for m € {1, ..,4} and finally averaged
to obtain the final score.

2.3 Data

We used the officially released dataset®, which is the combination of the following two datasets:

Spark dataset: This dataset is a collection of short texts containing a variety of subjects featured in
advertisements, posters, flyers, or motivational memes collected from Adobe Spark and contains 1200
instances.

Quotes dataset: This dataset collected from Wisdom Quotes contains 2,718 instances of quotes from
well-known authors.

The dataset contains very short texts, usually fewer than 10 words, and is randomly divided into training
(70%), development (10%) and test (20%) sets by the organizers.

2.4 Previous Work

The baseline paper (Shirani et al., 2019) employs an end-to-end label distribution learning (LDL) and
predicts a selection distribution. The model consists of an embedding layer, which is GloVe (Pennington

3https://github.com/RiTUAL-UH/SemEval2020 _Task10_Emphasis_Selection

1666


https://github.com/RiTUAL-UH/SemEval2020_Task10_Emphasis_Selection

et al., 2014) or ELMo (Peters et al., 2018) embeddings, followed by BiLSTM layers and, in the end, fully
connected layers. Here, the output of BILSTM layers for each word is passed through fully connected
layers to predict the probabilities of emphasis and non-emphasis whose sum is 1.

3 System Overview

Our system takes as input the words in the text and corresponding to each word, gives the probability
of the word to be emphasized. We tried two different types of sequence labeling approaches to learn
emphasis patterns.
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Figure 2: Models for both approaches

3.1 BiLSTM + Attention Approach

This approach involves character-level embeddings of each word of a sentence in addition to the word
embeddings (Figure 2a). The characters of the sentences are passed through a pair of forward and
backward LSTM. For each word, the outputs of the forward and backward LSTMs at the position of the
last character of the word are taken, concatenated, and then passed through a highway layer to obtain the
character-level embeddings of that word. These character-level embeddings are then concatenated with
word embeddings obtained using pre-trained models such as GloVe or ELMo and passed through a pair of
BiLSTM Layers. A self-attention layer (Cheng et al., 2016) which helps in learning the dependencies
between the words in the sentence and gives different importance to different words while predicting is
finally added, followed by a neural-network-based classifier which gives the probability of emphasis for
each word. We also concatenated the POS tag of the words to the output of the Attention layers. The
representation for each word at the output of Attention layers (along with POS tag concatenation) is
passed through the fully connected layers to output the emphasis probability of the word.

3.2 Transformers Approach

In this approach, we use Transformer-based models with fully connected layers. Words are tokenized
using appropriate tokenizer for each transformer model. Word embedding is obtained by concatenating
the hidden layers of all encoder layers of the transformer-based model. And in the end, there are few fully
connected layers with a dropout layer after each fully connected layer except the last one. Finally, the
output of the last layer is passed through a sigmoid layer, which gives the probabilistic score of each word
(Figure 2b). Here transformer-based models include BERT and BERT Large, RoBERTa and RoBERTa
Large, XLNet Large, GPT-2 Medium, ALBERT, etc. We call this type of model as Transfomer-model and
Classifier model (like BERT and Classifier model in Figure 2b) in all further discussions.

Finally, we used an ensemble of the above transformer models by taking the average of the scores
predicted by these models. This helps to combine multiple models into one predictive model with less
variance and improved predictions.
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4 Experimental Setup

Our implementation uses PyTorch? library for deep learning models and the Transformers library by
Hugging face’ for the pre-trained transformer models and their tokenizers.

In BiLSTM + Attention approach, for obtaining character-level embeddings, a pair of BiLSTM layers
with hidden size of 300 is used, whose output is passed through a highway layer and then concatenated
with the GloVe or ELMo embeddings. This concatenated vector is then passed through another pair of
BiLSTM layers with hidden dimension of 512. For the classifier, a pair of fully connected layer is used
with ReLU activation function (Agarap, 2018) and hidden dimension of 20. Finally, the output of the last
fully connected layer is passed through a sigmoid layer, which gives the probabilistic score of each word.
To avoid overfitting, dropout layers with a probability of 0.3 were used.

In the Transformers approach, the pre-trained transformer models were used without freezing the layers,
and the outputs of all the layers were concatenated. For the classifier, three fully connected layers are used
with ReLU activation function and hidden dimension of 900 and 40 for larger transformer models and 300
and 20 for normal models. Dropout layers with a probability of 0.3 are also added to avoid overfitting.

In both approaches, Binary Cross-Entropy loss is used for training the model, whereas Match,,, score is
used as the performance metrics for validation (as described in Section 2.2). We used Adam optimizer
(Kingma and Ba, 2014) with the learning rate set to 0.001 for BILSTM + Attention approach and 2e-5 for
the Transformers approach. The model is fine-tuned for 100 epochs in BiLSTM + Attention approach
and 30 epochs in the Transformers approach, and the reported test result corresponds to the best score
obtained on the validation set.

5 Results

We attempted numerous small changes to our models in the BILSTM + Attention as well as the Trans-
formers approach to enhance the performance. This included hyper-parameter tuning like changing size
and dimensions for different layers with some specific attempts particular to each approach.

Model Best Score Model Best Score
Baseline Model 0.731 BERT + BiLSTM + Attention + FC layers 0.771
Baseline + Character BERT + GRU + Attention + FC layers 0.755
Embedding Model 0.743 BERT + Classifier 0.775
Baseline + Character BERT Large + Classifier 0.789
Embedding Model + 0.747 RoBERTa_Base + Classifier 0.775
POS Tag Concatenation RoBERTa_Large + Classifier 0.790
Baseline + Character XLNet_Large + Classifier 0.804
Embedding Model + 0.738 ALBERT + Classifier 0.755
POS Tag Concatenation ' GPT-2 + Classifier 0.725
+ Language Model XLM-RoBERTza + Classifier 0.785
Table 1: BiLSTM + Attention Approach Table 2: Transformers Approach

For the BiLSTM + Attention approach, we tried training the model separately on Quotes and Spark
dataset. We experimented using highway layers along with BILSTM layers to attain a better outcome.
We also tried using GRU layers (Yang et al., 2016) instead of BiLSTM layers. The word embeddings
used in this approach are GloVe and ELMo embeddings. We also tried incorporating a language model
to the character embedding model as done in this paper (Liu et al., 2018), where they predict the next
word using forward and backward character RNN layers whenever they encounter space in the sentence.
In Table 1, we present the best results (evaluation score as defined in section 2.2) on the validation set
obtained after all these attempts for the BILSTM + Attention approach. These were achieved using ELMo
embeddings and BiLSTM layers.

*https://pytorch.org/
>https://huggingface.co/transformers/
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For the Transformers approach, we altered the number of freezed layers in all the transformer models
(BERT, XLNet, RoBERTa) while training. We attempted taking first-word embeddings/average of
embeddings of all words in cases in which a word is broken into multiple tokens by the transformer model
tokenizer. We also tried taking the output of the last hidden layer as well as concatenating all hidden
layers of the transformer models as the final embedding of the word. Another type of model tried was the
BERT Language Model with BiLSTM layers, attention, and fully connected layers on the top. This is
basically using all the BERT hidden layers as embeddings by concatenating them, rather than GloVe or
ELMo embeddings.

Best results were obtained by concatenating all layers, taking first token output as word embedding,
without freezing any layer of the transformer model, and taking three fully connected layers on the top
(their dimensions fine-tuned for each model). Table 2 contains the best results for all models on the
validation set in the Transformers approach according to the evaluation metric.

Ensembling Model (runs) Validation Score | Test score
XLNet (11) 0.811 0.807
BERT (2), RoBERTa (3), XLNet (8) 0.808 0.809
BERT (2), RoBERTa (3), XLNet (9) 0.810 0.810

Table 3: Ensembling Results

In the end, we tried an ensemble of models from the Transformers approach. We picked BERT _Large,
RoBERTa _Large, and XLNet_Large models for both homogeneous and heterogeneous ensembling. After
running multiple runs of each model, we took an average of the scores across multiple runs to obtain the
final score for each word in each instance. Some of the results on the validation and test set are given
in Table 3 (Large variants of all transformer models were used). The numbers in the bracket denote the
number of runs of that particular model that were used in the ensemble.

We ranked third on the task leader board with a test score of 0.810. The top-performing team has a
score of 0.823, while the second team has a score of 0.814.
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Figure 3: Heatmap of emphases

Figure 3 shows some examples, with a heatmap showing the XL Net_Large + Classifier model’s
predicted score and ground truth probabilities. The model performs well for the first two examples, where
the prediction is fairly accurate for all the words. For the last two examples, the model fails for some of
the words. In general, the model ceases to perform well on short sentences with three to four words.

6 Conclusion

We described the systems used for submission in the Task of Emphasis Selection For Written Text in
Visual Media. The task was similar to the Sequence Labeling task, and hence, similar approaches can be
used for this task. Our main approach used Transformer-based models like BERT, RoBERTa, XLNet, and
their ensembles. These models are pre-trained and hence, perform better after fine-tuning on our small
dataset.

Future work includes making an application that automates the process of poster or advertisement
making. A short written text will be the input to the app. It then predicts the probability of various
words to be emphasized based on predictions from our model and also adds an appropriate image as the
background either using GANs (Radford et al., 2015) or using some other API. Finally, it will output a
poster, flyer, or advertisement.
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