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Abstract

This paper shows our system for SemEval-2020 task 10, Emphasis Selection for Written Text in
Visual Media. Our strategy is two-fold. First, we propose fine-tuning many pre-trained language
models, predicting an emphasis probability distribution over tokens. Then, we propose stacking a
trainable distribution fusion (DISTFUSE) system to fuse the predictions of the fine-tuned models.
Experimental results show that DISTFUSE is comparable or better when compared with a naive
average ensemble. As a result, we were ranked 2nd amongst 31 teams.

1 Introduction

This paper presents our strategy for SemEval-2020 task 10, Emphasis Selection for Written Text in Visual
Media (Shirani et al., 2020). The task is aimed at emphasis selection, choosing candidates for emphasis
in short written text in visual media (Shirani et al., 2019). Rather than predicting emphasis spans or using
images, the task involves the prediction of an emphasis distribution over a short text without any image
inputs.
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Figure 1: Overview of our strategy

We tackle the task by combining rich contextualized embed-
dings of many fine-tuned pre-trained language models (PLMs).
Our strategy, shown in Figure 1, is a simple but effective meta
ensemble method. First, we fine-tune heterogeneous PLMs
such as BERT (Devlin et al., 2019) and GPT-2 (Radford et al.,
2019), predicting an emphasis distribution over tokens. The
models are trained with the KL-divergence of gold-emphasis
distributions over tokens in a text fragment to handle the am-
biguity within annotations (Shirani et al., 2019). Second, we
propose distribution fusion (DISTFUSE) for ensembles. Dif-
ferent from an averaging ensemble, DISTFUSE assigns a kind
of reliability weight to each distribution. Hence, accuracy can
be improved with the method.

We evaluate the proposed system in large-scale experiments
that suggest that DISTFUSE is comparable or better when com-
pared with the average ensemble. As a result, our system ranked 2nd amongst 31 teams. We also provide
interesting insights such as on the distinct performance of PLMs, training techniques, and hyperparame-
ters in the results section.

2 Background

The modeling of word emphasis has been widely tackled in some contexts. Zhang et al. (2016) proposed
a model for extracting key phrases from Twitter text. In the context of accent, Nakajima et al. (2014)
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Figure 2: Overview of training and test procedures for DISTFUSE. First, we fine-tune PLMs with cross-
validation and hyperparameter search. Then, we train DISTFUSE, which fuses output distributions of
fine-tuned models. Black and red connections show training and test runs, respectively.

predicted emphasized phrases from Japanese advertisement text for text-to-speech synthesis. In this
shared task, however, the form of emphasis is different. Shirani et al. (2019) provided a corpus with
emphasized tokens based on BIO labels. The authors kept inter-subjectivity in the annotator as well as
the ambiguity of the input rather than deciding gold spans. To this end, how many annotators marked a
token emphasized was recorded, producing an emphasized probability over tokens.

3 Model

3.1 Fine-Tuning PLM for Emphasis Selection

Given a tokenized text τ , we fine-tune a PLM to predict emphasis distributions over tokens. In
this study, we employ seven state-of-the-art PLMs, BERT (Devlin et al., 2019), GPT-2 (Radford et
al., 2019), RoBERTa (Liu et al., 2019), XLM-RoBERTa (Conneau et al., 2019), XLNet (Yang et
al., 2019), XLM (Lample and Conneau, 2019), and T5 (Raffel et al., 2019). Therefore, PLM ∈
{BERT,GPT-2,RoBERTa,XLM-RoBERTa,XLNet,XLM,T5}. We obtain the PLM embedding of the
i-th word token with a layer-wise attention (Kondratyuk and Straka, 2019):

ePLMτ,i = c
∑
j

PLMτ,ij · softmax (s)j ,

where c and s are learnable parameters, and PLMτ,ij is an embedding of the i-th word token1 in the j-th
layer of the PLM in the text τ . To further obtain rich features, we add part-of-speech embeddings (ePOSτ,i )
and token embeddings from a character-level LSTM (echarτ,i ). Hence, the input representation of the i-th
word token is represented as eτ,i = ePLMτ,i ⊕ ePOSτ,i ⊕ echarτ,i , where ⊕ is a concatenate operation. Then, we
obtain the emphasis distribution associated with token i by simply taking feed forward networks (FFNs):

sτ,i = w>FFN (eτ,i) + b,

ŷτ,i = softmax (sτ,1 . . . sτ,Nτ )i,

where w and b are learnable parameters, and Nτ is the number of tokens in the text.
Following Shirani et al. (2019), we compute the Kullback-Leibler divergence [KL-Div; (Kullback and

Leibler, 1951)] for the predicted ŷτ and true tτ distribution to compute the objective:

Lτ = DKL(tτ ‖ ŷτ ) =
∑
i

tτ,i log
tτ,i
ŷτ,i

.

1Sub-word tokens are averaged, and the averaged output per word token is used as PLMij .
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PLM model name

BERT (Devlin et al., 2019) bert-large-cased-
whole-word-masking

GPT-2 (Radford et al., 2019) gpt2-medium
RoBERTa (Liu et al., 2019) roberta-large
XLM-RoBERTa (Conneau et al., 2019) xlm-roberta-large
XLNet (Yang et al., 2019) xlnet-large-cased
XLM (Lample and Conneau, 2019) xlm-mlm-en-2048
T5 (Raffel et al., 2019) t5-large

Table 1: Provided PLMs and their type

base value DISTFUSE value
folds (k) 5 optimizer SGD
POS dim 50 initial learning rate 10.0
Char dim 50 momentum 0.9
PLM layer dropout 0.1 batch size 2048
FFN dim 200 epochs 10
FFN layer 1 fusion dropout 0.1
FFN activation ReLU
optimizer Adam
β1, β2 0.9, 0.999

gradient clipping 5.0
batch size 6
epochs 30

Table 2: Hyperparameter values

3.2 Cross-Validation and Model Selection
To generate better models, we fine-tune PLMs with different hyperparameter sets (e.g., learning rates and
dropout ratios) as shown in Figure 2. In the training, there are four steps:

1.Generate different hyperparameter sets. For each set, provide k-fold cross validation.2

2.Train the model with training folds excluding the validation fold.
3.Predict the validation fold using the trained model, obtaining emphasis distributions of all training

samples by concatenating the predicted validation folds. Hence, we can calculate the performance
for each hyperparameter set. We select the top hyperparameter sets on the basis of the validation
score.

4.Train DISTFUSE (described later) to assign a reliability weight to each of the top hyperparameter
sets. The input for DISTFUSE is the concatenated validation folds, and DISTFUSE is trained with
gold distributions.

For the test prediction, we have three steps:

1.Predict emphasis distributions of test data with the trained models for each top hyperparameter set.
2.Take an average of the output emphasis distributions for each hyperparameter set.
3.Input the averaged distributions into DISTFUSE, obtaining the final outputs.

3.3 Distribution Fusion (DISTFUSE)
To fuse the fine-tuned PLMs, we present DISTFUSE, which utilizes the meta-information of output em-
phasis distributions. Let {h1, h2, . . . } be a set of the combinations of the top-performing hyperparameter
set and PLM (e.g., h1 = (hyperparameter set 1,BERT)) and d̂τ,hi ∈ RNτ be an output emphasis distri-
bution for hi. DISTFUSE assigns to each distribution a kind of reliability weight, fusing them all:

d̂τ =
∑
i

d̂τ,hi · softmax (s(fuse))i,

where s(fuse) is a tunable parameter. If softmax (s(fuse))i is larger, the network considers the distribution
d̂τ,hi to be more reliable, and vice versa. We also incorporate mean pooled d̂τ,mean, max pooled d̂τ,max,
and min pooled d̂τ,min distributions to the input for stable training.

Finally, KL-Div loss is employed to train DISTFUSE:

L(DISTFUSE)
τ = DKL(tτ ‖ d̂τ ).

4 Experiments

Implementation: Seven PLMs, shown in Table 1, were provided. We implemented models with PyTorch
(Paszke et al., 2019) and Hugging Face’s transformer library (Wolf et al., 2019).

The learnable parameters in the models were split into two groups (Kondratyuk and Straka, 2019),
one for the PLM parameters and one for all other non PLM parameters, assigning a different optimizer for

2To prevent label leakage in the fusion process, the folds are always fixed.
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team total (rank) m=1 m=2 m=3 m=4
ERNIE 82.3 (1) 72.4 81.9 86.2 88.7
Hitachi (ours) 81.4 (2) 71.5 81.1 85.1 88.0
IITK 81.0 (3) 69.4 81.2 85.4 87.9
Sherry 80.5 (4) 67.7 80.3 85.8 88.1
Sattiy 79.9 (5) 67.7 79.9 85.0 87.0
baseline (BiLSTM-ELMo) 75.0 (19) 60.8 73.7 80.7 84.9

Table 3: Official scores on test set of top 5 teams and
baseline. Bold and underline show first and second re-
sults, respectively.

total m=1 m=2 m=3 m=4
BERT 80.6 68.9 81.2 85.3 87.3
GPT-2 76.7 63.8 76.9 81.8 84.1
RoBERTa 80.2 69.9 80.4 84.4 86.3
XLM-RoBERTa 80.2 68.6 80.5 84.8 87.0
XLNet 81.1 71.9 80.8 84.8 87.0
XLM 79.6 68.9 79.4 83.8 86.1
T5 79.0 67.3 79.6 83.6 85.5

Table 4: Comparison of performance of each
PLM on development set

total m=1 m=2 m=3 m=4
w/ DISTFUSE (ours) 81.4 71.5 81.1 85.1 88.0
average ensemble 81.0 70.8 80.5 85.0 87.8

(a) On test set

total m=1 m=2 m=3 m=4
w/ DISTFUSE (ours) 81.8 71.7 82.0 85.4 88.0
average ensemble 81.7 71.7 81.8 85.6 87.8

(b) On development set

Table 5: DISTFUSE and average ensemble comparison
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Figure 4: DISTFUSE weight (i.e., softmax
(
s(fuse)

)
) analysis. Since

we selected top 3 hyperparameter sets for each PLM, error bars of top 3
sets are presented.

each group. We froze PLM parameters for the first epoch to improve the training stability (Kondratyuk
and Straka, 2019). Layer attentions were applied for the last eight layers for all PLMs, employing
dropout. We applied linear warmup for learning rate scheduling with Adam (Kingma and Ba, 2015). For
DISTFUSE, we employed SGD, decaying the learning rate every step.

Hyperparameter sets including learning rates and dropout ratios were generated by the Optuna frame-
work (Akiba et al., 2019). The optimal learning rates are described in the results section. The rest of the
fixed hyperparameters can be found in Table 2. We generated 40 hyperparameter sets for each PLM, and
the top 3 sets for each PLM were selected for DISTFUSE.

We report the results for both the development and test sets. In the training to predict the test set, we
incorporated the development set into the training set.
Metric: Systems were evaluated with Matchm (Shirani et al., 2019) defined as:

Matchm =

∑
x∈Dtest

|S(x)
m ∩ Ŝ(x)

m |/min(m, |x|)
|Dtest|

,

where Dtest is the test set, S(x)
m is a set of m ∈ {1 . . . 4} words with top m true probabilities, and Ŝ(x)

m is
based on the system’s top m probabilities.

4.1 Results

Table 3 presents the official test results, showing that our system is ranked 2nd. The table also shows that
our system performed well when m = 1, implying effectiveness in detecting the most emphasized word.

When trained only on the training set without the development set, we obtained a total score of 81.2
(i.e., for eachm, 71.1, 80.5, 85.3, and 88.0), showing that our model was effective even when the amount
of training data was smaller.
Analyses of PLMs: To show how each PLM worked, Table 4 shows the independent performance of
each PLM with the top 3 hyperparameter sets. As can be seen, the BERT and XLNet models generally
performed well. Interestingly, the table also shows that the PLMs themselves were not as strong as our
final model (i.e., fusing all PLM types) in most cases. This suggests that using heterogeneous PLMs can



1662

6 7 8 9
100μ

2 3 4 5 6 7 8 9

1μ

2

5

10μ

−0.78

−0.775

−0.77

Objective Value

(a) BERT

6 7 8 9
100μ

2 3 4 5 6 7 8 9

1μ

2

5

10μ

−0.73

−0.72

−0.71

Objective Value

(b) GPT-2

6 7 8 9
100μ

2 3 4 5 6 7 8 9

1μ

2

5

10μ

−0.782

−0.78

−0.778

−0.776

−0.774

Objective Value

(c) XLM-RoBERTa

6 7 8 9
100μ

2 3 4 5 6 7 8 9

1μ

2

5

10μ

−0.78

−0.77

−0.76

Objective Value

(d) XLNet

6 7 8 9
100μ

2 3 4 5 6 7 8 9
8
9

1μ

2

3

4
5
6
7
8
9

10μ

−0.78

−0.778

−0.776

−0.774

Objective Value

(e) RoBERTa

6 7 8 9
100μ

2 3 4 5 6 7 8

1μ

2

5

10μ

−0.7

−0.6

Objective Value

(f) T5

6 7 8 9
100μ

2 3 4 5 6 7 8 9
7
8
9

1μ

2

3

4
5
6
7
8
9

10μ

−0.77

−0.765

Objective Value

(g) XLM

Figure 5: Heatmap of negative validation scores in learning rate space, where X-axis shows learning
rate for non-PLM parameters, and Y -axis shows learning rate for PLM parameters. Each point indicates
searched hyperparameter set. Note that darker colors indicate better performance, and note that scale
used for these graphs differs.

PLM parameter non PLM parameter
BERT 1.28× 10−5 1.46× 10−4

GPT-2 6.78× 10−6 3.91× 10−4

RoBERTa 6.95× 10−6 4.12× 10−4

XLM-RoBERTa 3.00× 10−6 9.92× 10−5

XLNet 4.29× 10−6 9.29× 10−5

XLM 6.29× 10−6 2.29× 10−4

T5 1.99× 10−5 2.68× 10−4

Table 6: Optimized learning rates

Life is a succession of lessons .. lived .. understood
gold 1 2 1 2 3
BERT 1 2 3
GPT-2 2 1 3
RoBERTa 2 1 3
XLNet 2 3 1
XLM 2 3 1
XLM-RoBERTa 1 3 2
T5 1 3 2

Table 7: Sample output of top three emphasis ranking

boost performance.
We visualized the layer-wise weight of the fine-tuned PLMs in Figure 3, showing that most weighted

layers were generally found in the last several layers. However, there was a high variance, e.g., XLM
and XLNet were less weighted in the last layers, and T5 had a higher up-down property.
Analyses of DISTFUSE: Table 5 compares the performance between DISTFUSE and an average ensem-
ble. As can be seen, the proposed DISTFUSE consistently showed comparative or better performance.
The result suggests that DISTFUSE is promising in terms of boosting performance.

Figure 4 illustrates the weight parameter s(fuse) of DISTFUSE, interestingly showing that the min and
max pooled inputs were the most important elements. We estimate that this is because max and min
pooled elements incorporate the features of the most or least emphasized information. Also, we can see
that strong PLMs such as XLM-RoBERTa and XLNet were more weighted than XLM and GPT-2. We
estimate that the weight assignment ability of DISTFUSE made more robust predictions.
Meta-Insights: Our in-depth analyses showed that tuning the learning rates of each PLM is important.
Figure 5 visualizes the learning rate space for the two parameter groups. The figure shows that there are
definitely optimal points in the learning rate for both the PLM and non-PLM groups. For example, the
optimal rates of BERT were mostly found in the upper left.

We show the optimal learning rates in Table 6. XLM-RoBERTa and XLNet had relatively smaller
learning rates, while BERT and T5 had larger rates. The table also shows that the learning rates of the
non-PLM parameters were larger than the PLM parameters. This insight suggests that tuning the two
groups independently could be effective.
Case Study: Table 7 shows an example of the output emphasis rankings for Life is a succession of
lessons which must be lived to be understood in a validation fold. Most of the PLMs could predict
that the most emphasized words would be Life and lessons, showing the promising capability of PLMs.
The table also shows that each PLM had different outputs. For example, while succession was strongly
emphasized by GPT-2, the other PLMs did not emphasize it. We can also see that some of the models
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captured less emphasized tokens such as lived and understand.

5 Conclusion

In this paper, we proposed a model for the task of emphasis selection. We employed seven pre-trained
language models and fused them with the distribution fusion (DISTFUSE) system. Experimental results
suggested that DISTFUSE is promising in terms of boosting performance. We estimate that the effec-
tiveness of DISTFUSE would be further validated by additional analyses (Dodge et al., 2019), which is
future work. As additional future work, we will examine more effective ways of computing distributions.
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