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Abstract

This paper describes our contribution to SemEval-2020 Task 11: Detection Of Propaganda
Techniques In News Articles. We start with simple LSTM baselines and move to an autoregressive
transformer decoder to predict long continuous propaganda spans for the first subtask. We also
adopt an approach from relation extraction by enveloping spans mentioned above with special
tokens for the second subtask of propaganda technique classification. Our models report an
F-score of 44.6% and a micro-averaged F-score of 58.2% for those tasks accordingly.

1 Introduction

In recent years natural language processing has experienced rapid development. In particular, application
of deep learning to NLP (Collobert et al., 2011), the introduction of pre-trained context-independent word
embeddings such as word2vec (Mikolov et al., 2013a; Mikolov et al., 2013b), GloVe (Pennington et al.,
2014) and fastText (Bojanowski et al., 2017), and utilization of RNN-based (Hochreiter and Schmidhuber,
1997) pipelines such as CharCNN-BLSTM-CRF (Lample et al., 2016; Ma and Hovy, 2016) allowed
to improve SOTA for an overwhelming majority of NLP tasks. In 2018 a monumental breakthrough
happened when context-dependent embeddings based on pre-trained language models emerged, such as
ELMo (Peters et al., 2018), ULMFit (Howard and Ruder, 2018), and BERT (Devlin et al., 2018). The
resulting boost in the models’ performance cannot be underestimated, amounting to a 30% relative error
reduction rate.

Researchers compare this latest development to the introduction of ImageNet to Computer Vision.
Furthermore, as breakthroughs in CV allowed such technologies as DeepFake to arise, similar processes
are happening to NLP: the authors of GPT2 (Radford et al., 2019) anticipated that their model could be
used for malicious purposes such as fake news generation or even impersonation. Given that at present,
the problem of media swaying public opinion to the benefit of certain parties is more acute than ever, we
must keep our news fair and unbiased; thus, techniques for fake news and propaganda detection need to
be developed. SemEval-2020 task 11 is an essential step in that direction.

Another noteworthy consequence of contextualized embeddings introduction is the generalization
of models. While many models are developed for a particular task, they can be effectively utilized in
order to solve other tasks. Our main contribution is the utilization of two such models for new tasks,
namely LaserTagger (Malmi et al., 2019), initially developed for summarization, which is used for span
identification, while R-BERT (Wu and He, 2019), originally developed for relation extraction, is used for
span classification.

Section 2 contains the description of our systems!, section 3 contains evaluation results and error
analysis, while part 4 contains the concluding remark.

"The code is released at https://github.com/hawkeoni/Semeval2020_taskll.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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2 System description

All of the following models based on BERT (Devlin et al., 2018) use BERTggg pretrained model weights.
Hyperparameter tuning and cross-validation was performed on 5 folds split by articles. The data used for
training and evaluation consists of various news articles and is described in detail in (Da San Martino et
al., 2019). The tasks will be briefly explained in the following sections; their full description can be found
in the (Da San Martino et al., 2020).

2.1 Span Identification

The goal of this task is to find continuous spans of text which contain any propaganda technique. Consider
the following example, which has loaded language marked up in bold and double squared brackets:

It’s essentially an admission of guilt, given that it is [[absolutely ludicrous]] to think that
“national security” would be threatened by the release of the CIA’s long-secret JFK-assassination-
related records.

We treat this task as a binary sequence tagging where each token is assigned a label: O - for normal text,
1 - for propaganda text. Although there are spans which overlap multiple sentences, we decided to split
such spans and solve the problem on a sentence level. This approach has a distinct disadvantage, as the
connection between sentences is lost.

At first we started with several baseline bidirectional LSTM models with linear layer for token class
prediction:

e biLSTMgGLOVE + charL.sTM - @ bidirectional LSTM over GloVe embeddings and a character-level
LSTM. This is a simple sequence tagging model proposed originally in (Lample et al., 2016).

e biLSTMgy.Mmo - a bidirectional LSTM over ELMo embeddings from (Peters et al., 2018).

Preliminary results of those models achieved an F-score of 24-26% on the development set. Postpro-
cessing model predictions by labeling all tokens between the first sentence-wise positive label and the last
sentence-wise positive label as propaganda pushed F-score to 34.5%. A CREF instead of a linear layer
provided no significant benefit.

Our next model BERTy jngaRr, Which consists of a linear layer over BERTgagg, achieved a stronger
baseline with F-score of 40.8% without any postprocessing. However, unlike in previous models postpro-
cessing only made things worse, degrading prediction quality.

Generating token tags with a linear layer has one big flaw: predictions for each token are made indepen-
dently. CRF mitigates this problem and improves the metrics, but we decided to employ LaserTagger - an
autoregressive transformer decoder from (Malmi et al., 2019). One of the critical ideas of LaserTagger is
directly consuming corresponding encoder activation without learning encoder-decoder attention weights.
LaserTagger achieved an even stronger baseline with an F-score of 42% on development set, which at
the time was only several points away from top-performing teams. It was decided to keep this model and
extensively tune it during further experiments.

We have employed several techniques to boost model performance:

o We fine-tune BERT as a masked language model on task corpus for 3 epochs without next sentence
prediction loss. This provides no noticeable increase in F-score.

e Teacher forcing (scheduled sampling) (Bengio et al., 2015) is a method of improving performance
for autoregressive models. As LaserTagger predictions explicitly depend on predictions from the
previous step, errors accumulated earlier may lead to a completely wrong result. Teacher forcing
aims to close the gap between training and inference by supplying a model with its own (possibly
wrong) predictions at a specific rate during training. This allows the model to explore more of its
state space during training, which in turn increases its robustness during inference. We linearly decay
teacher forcing rate from 1 (only correct labels) to O (only model predictions) during training. The
downside of this approach is a significant slowdown in training as we do not utilize the transformer’s
capability to process the whole sequence at once.
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Figure 1: LaserTagger model architecture. T; are token embeddings for BERT, E; are BERT outputs, H;
represent LaserTagger hidden states and L; are predicted labels.

e Label smoothing was used to lower the number of false-positive predictions and mitigating minor
data discrepancies like inconsistent inclusion of dots and quotations in propaganda spans, which
were caused by limiting spans to sentences and other preprocessing imperfections.

Our final submission was a single LaserTagger model with BERTgagg encoder, single-layered decoder
with hidden dimension of 128 and 4 attention heads. The model was trained on an effective batch size of
32 achieved by gradient accumulation over every 2 steps; we used Adam optimizer with learning rate of
2e-5 and learning rate warmup for 10% of the steps. Teacher forcing was set to linearly decay from 1 to 0
for the duration of the whole training. This model achieved F-score of 46.1% on development set and
44.6% on test set.

2.2 Technique Classification

The second subtask was to classify spans from previous subtasks into 14 classes of propaganda techniques.
As previously mentioned, spans can overlap several sentences, so for this subtask, we had to use all
overlapping sentences for correct classification. As spans with different techniques may overlap, or a
single span may be associated with several techniques, we treat this subtask as a multilabel classification
problem.

Our main idea was taken from R-BERT (Wu and He, 2019), where special tokens were inserted around
entities to highlight them in the task of relation extraction. As in R-BERT, we surround propaganda
spans with special tokens, namely the ~ token. BERT representations of propaganda span tokens are
then averaged or taken as a weighted sum based on results of the linear layer applied to BERT token
activations in the following way: let e;...e; 1 € R™ be BERT representations of propaganda tokens in
the current span and w € R",b € R - learnable parameters. Then the weighted sum is calculated as
Z;Jj ajej, where «; is the result of softmax function over scalar product of e; and w:

__ exp((w,€) +)
TS exp (w,e5) +b)
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The resulting vector is concatenated with BERT output of the [CLS] token for final multilabel pre-
diction. We also combine these approaches with previously mentioned BERT intask finetuning (Sun
et al., 2019), which proves to be fruitful for this task as it is not too dissimilar to text classification.
We additionally train a simple BERT model, which predicts technique class using only [CLS] token
representation. All models were trained with linear warmup for 10% of the training steps using the Adam
optimizer with learning rate of 2e-5.

Our final submission for task TC consists of predictions averaged from several models, which are
described in Section 3.2.

Concatenate , Technique
{ > Linear Layer Class
Average / Weighted Sum
e
r 0
E0 ESTO E1 E2 EST1 E3 E4
BERT
TO STO T1 T2 STH T3 T4

Figure 2: Task TC model architecture based on R-BERT. Tj are token embeddings for BERT; ST and
ST represent special tokens used to highlight the propaganda span; E; and EST; are BERT outputs

3 Experimental Results

3.1 Span Identification Results

Model F1 Precision Recall
biLSTMGLOVE + charLSTM 0.249 0.302 0.212
biLSTMGLOVE + charLSTM + postprocessing | 0.349 0.304 0411
biLSTMEgymo + postprocessing 0.345 0.327  0.367
BERTLINEAR 0.408 0.357 0477
BERT + CRF 0.362 0.301 0454
BERT + LSTM + CRF 0.414 0.363  0.482
LaserTagger 0.420 0.384  0.464
LaserTagger + TF 0.451 0.423 0.482
LaserTagger + TF + LS 0.461 0.406  0.533
LaserTagger + TF + LS (test) 0.446 0.556 0.373

Table 1: Task SI model results on development and test sets. TF and LS stand for teacher forcing and
label smoothing accordingly.

As Table 1 shows BERT-based approaches significantly outperform suggested LSTM baselines. Main
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Boundary errors

Gold: This is a [[smear]], plain and simple.

Prediction: This is [[a smear]], plain and simple.

Gold: Luke Harding and the Guardian Publish Still More [[Blatant MI6 Lies]]

Prediction: Luke Harding and the Guardian Publish Still More [[Blatant]] MI6 Lies

Quotation and punctuation errors

Gold: While trying to appear as a moderate, ”Gillum is a Progressive” and "He is a part of the [[crazy,
crazy, crazies]].”

Prediction: While trying to appear as a moderate, ”Gillum is a Progressive” and ’[[He is a part of the
crazy, crazy, crazies]].”

Gold: ”’[[I don’t care who you are]], determine the scope and the parameters of an investigation.
Prediction: ”[[1 don’t care who you are, determine the scope and the parameters of an investiga-
tion]].

Gold: “[[This is devastating]] for our Democratic Latino community.
Prediction: “[[This is devastating for our Democratic Latino community.]]

Table 2: LaserTagger + TF + LS errors.

improvements over simple BERT jngar model is LaserTagger decoder, which eliminates the flaw of
independent tag prediction. It was further improved by linearly decreasing teacher forcing rate over the
training and label smoothing. Our model scored 7th place out of 35 in the final table of the competition.

Table 2 illustrates the errors of our final model. Besides sometimes incorrectly adding or losing
boundary propaganda span tokens, LaserTagger + TF + LS seems to have a problem with quotation and
punctuation. When it encounters quoted text or a part of a sentence separated by commas, it either labels
the whole highlighted area as propaganda or misses it completely. This may be partly attributed to the
nature of quotes - speech often conveys more emotional words than written text. Another problem is that
when the model finds comma, it often closes the propaganda span and does not reopen it.

3.2 Technique Classification Results

Model micro-averaged F-measure
BERTcrs 0.573
R-BERT 0.592
R-BERTEt 0.584
R-BERTw 0.590
R-BERTw .+ rr 0.590
All models 0.606
All models (test) 0.582

Table 3: Task TI model results on development and test sets. W and FT stand for weighted sum instead of
averaging BERT token representation and intask finetuning accordingly.

All models from the table use the " special symbol to highlight propaganda spans because more than
20% of the sentences contain multiple propaganda spans. For example, if the model has 5 tokens e;...e5
and two propaganda spans e, e and e4, e5 we would create two training samples with the use token ,
which we will write for readability as st: st, ey, ea, st, e3, e4, 5 and ey, ez, €3, St, ey4, €5, st. This allows
us to point our model to a specific propaganda span inside a sentence.

Models from Table 3 are the following:
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e BERT (s - a model that predicts technique solely from [CLS] token embedding.

o R-BERT - a model that predicts technique from [CLS] token embedding and averaged propaganda
span representation;

o R-BERTY - a model that predicts technique from [CLS] token embedding and weighted propaganda
span representation;

It is important to understand that due to class imbalance models with the same micro-averaged F-score
correspond to different F-scores over specific techniques. While ensembling the models increases overall
quality, two classes, namely ”Bandwagon, Reduction Ad Hitlerum” and ”Whataboutism, Straw Men,
Red Herring”, are entirely missed by all our models. This is not surprising: those techniques have a very
limited amount of positive samples, which is the reason they were merged into classes. Class wise F-score
seems to respond to the quantity of corresponding class in training dataset: our model performs best on
Loaded Language and Name Calling, Labeling followed by Flag-Waving and Doubt.

We did not implement anything to boost performance on underrepresented classes, while some of the
other teams found a way to get an F-score of 20% and higher. Our model scored 6th place out of 31 in the
final table of the competition.

3.3 Dataset Exploration

During the competition, most teams had a substantial shift between recall and precision: precision was
10-20% lower than recall. On the contrary, test dataset evaluation resulted in a different picture: top-
performing teams’ precision is 5-15% higher than recall. Additionally, on task TC all teams suffered a
downgrade in micro-averaged F-score of approximately 5%.

This can be attributed to the fact that the datasets have imbalanced topic distributions. While the training
dataset is not very large, it is well-rounded and covers a wide range of topics. The development set is
focused on the US news, while the test set seems to have almost an even split between the UK and the US
news.

4 Conclusion

In this work, we propose to use two models: autoregressive transformer decoder for sequence tagging and
R-BERT-like approach for propaganda spans technique classification. The former is taken from such
tasks as sentence fusion, sentence splitting, and abstractive summarization, while the latter was originally
used for relation extraction.

Instead of exploring various pretrained transformers like BERTArge, ROBERTa, ALBERT and
XLNet or engineering domain-specific features and approaches, we focused on improving architectures
and trying to push them as far as possible.

In the future the results of this task may be used for propaganda detection in various media as well as
unbiasing texts and making them fair.
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