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Abstract

We propose a novel method that enables us to determine words that deserve to be emphasized from
written text in visual media, relying only on the information from the self-attention distributions
of pre-trained language models (PLMs). With extensive experiments and analyses, we show that
1) our zero-shot approach is superior to a reasonable baseline that adopts TF-IDF and that 2) there
exist several attention heads in PLMs specialized for emphasis selection, confirming that PLMs
are capable of recognizing important words in sentences.

1 Introduction

In terms of visual communication such as social media posts (posters, flyers, and ads) and motivational
messages, text emphasis is crucial in that it facilitates the comprehension of written text and that it helps
convey the author’s intent. Therefore, it is expected that the development of an automatic system that
recommends which part to emphasize in the text of visual media will bring significant advantages; e.g., it
is possible to accelerate the making process of posters and videos for advertisement. In this paper, we
attempt to devise such a system solely with the aid of pre-trained language models (PLMs) without any
task-specific laborious training.

Recently, there has been a substantial amount of work in the literature to figure out what knowledge
Transformer (Vaswani et al., 2017) based PLMs such as BERT (Devlin et al., 2019) contain and why they
perform surprisingly well on various downstream tasks (Goldberg, 2019; Kovaleva et al., 2019; Rogers et
al., 2020). Among these, a group of studies has focused on analyzing PLMs’ self-attention distributions to
find some evidence that supports the existence of linguistic knowledge within the pre-trained weights of
PLMs. Specifically, Clark et al. (2019) investigated BERT’s individual attention heads to probe its ability
to parse dependency trees, while Kim et al. (2020) proposed an unsupervised constituency parsing method
applicable on top of the distributions.

Following the same philosophy shared by the work mentioned above, we propose a zero-shot emphasis
selection method, assuming that during pre-training, some attention heads in PLMs are inspired to
recognize which words are more important than others. We test our method on a carefully designed dataset
(Shirani et al., 2020), and it records the ranking score 0.690 on the validation set, which outperforms
an intuitive baseline adopting the term frequency-inverse document frequency (TF-IDF) strategy (Jones,
1972). Furthermore, our method operates in a fully zero-shot manner, not leveraging gold-standard
annotations provided by the dataset at all, implying its universal applicability in a low/zero-resource
regime.

2 Task

This paper aims to present a tractable solution to the SemEval 2020 shared task 10 (Shirani et al., 2020).
The dataset provided by this task consists of short English sentences obtained from Adobe Spark. It
contains a variety of subjects featured in flyers, posters, and advertisements or motivational memes on
social media—for example, “In honor of the brave” (Shirani et al., 2019).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Words A1 A2 A3 A4 A5 A6 A7 A8 A9 e freq
In O I O O O O O O I 0.222

honor I I O O I I I I I 0.778
of O O O O O O O O I 0.111
the O O O O O O O O I 0.111

brave O I I I O I I I I 0.778

Table 1: Data structure of the example sentence “In honor of the
brave”. A1-A9 are nine annotators. I and O correspond to whether
to emphasize the word or not. Emphasis frequency, e freq, is the
average of nine labels of A1-A9. Figure 1: Sample attention map

of the example sentence.

In detail, as shown in Table 1, each word of a sentence in the dataset is provided with nine binary labels
(I/O tags) that correspond to the decisions of nine annotators, each indicating whether to emphasize the
target word or not. Here we define the emphasis frequency (e freq) of the word in the sentence as the
average of these nine labels, where treating ‘I’ as 1 and ‘O’ as 0. Our goal is to construct a model that
predicts the correct ranking of words based on each word’s gold emphasis frequency.

For evaluation, we use the Matchm (m ∈ [1, 2, 3, 4]) score which is calculated as:

Matchm =

∑
x∈D |S

(x)
m ∩ Ŝ

(x)
m |/m

|D|
, (1)

where S
(x)
m is a set of top-m high emphasis frequency words in an input sentence x of a dataset D.; e.g.,

S
(“In honor of the brave′′)
2 would be [’honor’, ’brave’]. Ŝ

(x)
m is a set of top-m high emphasis frequency

words based on our model’s prediction. | · | corresponds to the number of elements in a set. Moreover, we
introduce the Ranking Score as an aggregated measure that averages all possible Matchm scores:

Ranking Score =

∑
m∈[1,2,3,4]Matchm

4
. (2)

3 Method

In this section, we propose three ways to induce the emphasis frequency (e freq) of each word in a
sentence using a PLM’s1 attention maps. The intuition behind our approach is that the more one word
draws attention from other words, the more suitable this word as a target to be emphasized. In other
words, the words contribute the most to construct the intermediate representations of other words for the
next layer of PLMs should have high e freq values. As we only resort to the inherent knowledge of
PLMs rather than learning a separate model from scratch, we do not need any further training based on
supervision from gold-standard annotations to implement our approach. This characteristic is attractive
in a perspective that the annotations required to build gold-standard labels are too expensive and even
somewhat subjective.

To reduce the ambiguity, here we define terminology. We denote a sentence as a set of words,
s = {wm|m = 1, . . . , n}, where n stands for the number of words in the sentence. When a sentence s
is fed to a PLM, an attention map, which is a set of attention distributions of a particular self-attention
head, can be extracted. We define G as a set of attention maps extracted from a PLM; i.e., G = {g(i,j) ∈
R(n+2)×(n+2)|i = 1, . . . , l, j = 1, . . . , a}, where g(i,j) is an attention map of the jth attention head on the
ith layer, and l and a are the numbers of layers and attention heads per layer, respectively. The reason why
we add 2 to n is to consider two special tokens, [CLS] and [SEP]. In Figure 1, there is a sample attention
map of the example sentence, where each row represents an attention distribution of the corresponding
word; e.g., The 3rd row is an attention distribution of the word ’honor’ over other words.

1We consider the following PLMs as candidates for our method: BERT (Devlin et al., 2019), DistilBERT (Sanh et al., 2019),
GPT-2 (Radford et al., 2018), RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019), and XLM (Conneau and Lample, 2019)
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(a) Words2Target (b) CLS2Target (c) SEP2Target

Figure 2: Three ways to derive emphasis frequency, e freq, of a target word ’brave’. Dark areas are
where each method refers to.

There are some pre-processing procedures to obtain proper attention maps which can be utilized for our
methods. First, we add special tokens [CLS] and [SEP] to an input sentence.—for example, “[CLS] In
honor of the brave [SEP]” as described in Devlin et al. (2019). Then, we can extract attention maps after
feeding an input sentence to a PLM. Since most PLMs tokenize a sentence into subword-level, we convert
token-level attention maps to word-level attention maps by averaging each group of the attention weights
of subword tokens that belong to the same word following Clark et al. (2019) and Kim et al. (2020).

For each attention head, we consider three options to derive e freq(word): Words2Target, CLS2Target
and SEP2Target. Each option is depicted in Figure 2.

3.1 Words2Target

Given a particular attention head (the jth attention head on the ith layer extracted from a PLM), the
emphasis frequency of a word can be calculated as an average over other words’ attention weights on the
target word:

e freq(wordt)Words2Target =

∑n+2
k=1 g(i,j)[k][t]

n+ 2
(3)

This equation has a meaning of how much the tth word, wordt, is influential when constructing the hidden
representations of other words. It also can be thought of as the average of values on the tth column of the
attention map as shown in Figure 2 - (a).

3.2 CLS2Target and SEP2Target

Including BERT, many PLMs use special tokens ([CLS], [SEP]) to encode a sentence representation or
the relation of two input sentences. The attention weight of a special token on wordt means how much
the wordt contributes to sentence representation. Thus, when a PLM is given an input sequence ([CLS],
w1, w2, . . . , wn, [SEP]), we induce2 e freq(wordt) from the attention weight of wordt on both special
tokens, as expressed in Figure 2 - (b), (c):

e freq(wordt)CLS2Target = g(i,j)[idx[CLS]][t], (4)

e freq(wordt)SEP2Target = g(i,j)[idx[SEP ]][t]. (5)

3.3 Best Configuration Selection

For a single PLM, there are l × a× 3 possible configurations because e freq(wordt) can be computed
in three ways of M ∈ [Words2Target, CLS2Target, SEP2Target] for all g(i,j) ∈ G. For instance,
in the case of the BERT-base, which consists of 12 layers and 12 attention heads per layer, there are 12
× 12 × 3 = 432 possible configurations. We compute Matchm and Ranking Score scores for every(
g(i,j),M

)
pair and select the best configuration for the PLM based on the Ranking Score.

2These methods can’t be applied to GPT-2 model because it doesn’t use special tokens.
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Model L A Method M1 M2 M3 M4 R dev R test
Baseline
Random - - - 0.1734 0.3090 0.3749 0.4522 0.3273 0.3176
Word Counting - - - 0.2857 0.4775 0.5625 0.6295 0.4888 0.5113
TF-IDF - - - 0.3061 0.4615 0.6146 0.6758 0.5145 0.5184
English Pre-trained LMs
BERT-base-cased 10 10 Word2Target 0.4388 0.6048 0.7045 0.7394 0.6219 -
BERT-base-uncased 10 8 Word2Target 0.4311 0.6247 0.7254 0.7652 0.6366 0.6249
BERT-large-cased 11 4 CLS2Target 0.4490 0.6286 0.6932 0.725 0.6240 -
BERT-large-uncased 15 4 Word2Target 0.4490 0.6233 0.7358 0.7598 0.6420 0.6287
DistilBERT-base-cased 5 10 Word2Target 0.4362 0.6233 0.7083 0.7530 0.6302 0.6130
DistilBERT-base-uncased 5 8 Word2Target 0.4541 0.6194 0.7263 0.7682 0.6420 0.6288
GPT-2 3 10 Word2Target 0.2245 0.4350 0.5691 0.625 0.4634 -
RoBERTa-base 3 5 CLS2Target 0.4413 0.5889 0.6884 0.7152 0.6084 -
RoBERTa-large 10 14 Word2Target 0.4158 0.5703 0.6619 0.7023 0.5876 -
XLNet-base 2 4 Word2Target 0.2985 0.4204 0.4848 0.5129 0.4292 -
XLNet-large 3 11 Word2Target 0.3010 0.4403 0.4953 0.5530 0.4474 -
XLM-mlm 1 16 Word2Target 0.3776 0.5650 0.6496 0.7068 0.5747 -
Multilingual Pre-trained LMs
BERT-base-multilingual 8 6 Word2Target 0.4490 0.6207 0.7083 0.7409 0.6297 -
DistilBERT-base-multilingual 4 6 Word2Target 0.4362 0.6260 0.7140 0.7614 0.6344 0.6199
XLM-mlm-17 1 2 Word2Target 0.4260 0.5584 0.6203 0.6674 0.5680 -
XLM-mlm-100 15 12 SEP2Target 0.3673 0.5782 0.6761 0.7303 0.5880 -
Ensemble - - - 0.4847 0.6790 0.7803 0.8152 0.6898 0.6656
Supervised Baseline - - - 0.5918 0.7520 0.8040 0.8220 0.7424 0.75

Table 2: Experimental results. L: layer number, A: attention head number, Method: Word2Target /
CLS2Target / SEP2Target, M1-M4: Match1-Match4 scores on the validation set, R dev: Ranking score
on the validation set, R test: Ranking score on the test set. Bold numbers correspond to the top 5 ranking
scores of single models, and ensemble model. We report R test scores only for the top-5 models and the
ensemble model.

3.4 Baseline
To evaluate the performance of our method more precisely, we propose a reasonable baseline using Term
Frequency-Inverse Document Frequency (TF-IDF) as follows:

e freq(wordt, ddev)TF−IDF =
fwordt,ddev

len(ddev)
× log

|Dtrain|
|dtrain ∈ Dtrain : wordt ∈ dtrain|+ 1

(6)

where Dtrain and Ddev are sets of sentences of the training set and validation set, and dtrain and ddev
are sentences sampled respectively from these datasets. fwordt,ddev means the number of occurrences of
wordt in the sentence ddev. len(ddev) is the number of words in ddev. The more wordt occurs in the
sentence and less included in the whole training set, the larger TF-IDF for wordt in the sentence will be.
This is why the TF-IDF is considered a statistical measure of word specialty in a particular document.
Word counting method assigns 1

fwordt,Dtrain
which leads to rare words having larger e freq values. In

addition, the random baseline method randomly gives e freq value of the target word. In experiments,
we show that the TF-IDF model performs better than the other two methods, making it a suitable option
as a reasonable baseline.

4 Results

In Table 2, we report the results of our method to various PLMs on the validation set and test set.
Note that without a few exceptions, our method combined with PLMs performs better than baselines,
including the one with TF-IDF (0.5145 ranking score). Among PLMs, the BERT-large-uncased and
DistilBERT-base-uncased models record the best performance.

Here we mention several takeaways from our results. First, particular PLMs (GPT-2, XLNet) report
comparably lower ranking scores against the other PLMs and the TF-IDF baseline. Since GPT-2 adopts a
Transformer decoder to its architecture, its attention distribution is leaned on the first word of a sentence
(Vig, 2019). This results in a sub-optimal solution where each first word for all 390 sentences in the
validation set becomes the top-1 e freq high score word. On the other hand, XLNet model tends to focus
more on punctuation marks such as period (.) and comma (,). Specifically, the XLNet-base model predicts
that a period should be one of the top-4 high e freq words for 289 sentences in the validation set, even
though the prediction is correct only for 48 cases.
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Models S1: “Beauty is not in the face ; beauty is a light in the heart . ” S2: “The bird a nest , the spider a web , man friendship . ”
Gold heart(1), Beauty(2), light(3), in(4), the(4) friendship(1), bird(2), nest(2), man(2)
Ours light(1), face(2), Beauty(3), beauty(4) friendship(1), web(2), a(3), nest(4)

M1 / M2 / M3 / M4 / R 0.0 / 0.0 / 0.6667 / 0.5 / 0.2917 1.0 / 0.5 / 0.3333 / 0.5 / 0.5833

Table 3: Top-4 emphasis frequency words in two sentences from gold and our model. Gold: from gold
e freq values, Ours: DistilBERT-base-uncased’s best configuration. Words are sorted based on e freq
values and ranks are in parentheses. M1-M4, R: sentence-wise Match1-Match4 score and ranking score
for the corresponding sentence.

Second, although the results from our method record relatively lower score than that of the supervised
baseline model (DL-BiLSTM+ELMo model) proposed in Shirani et al. (2019), we find that it generates
quite meaningful emphasis selections. In Table 3, the DistilBERT-base-uncased model selects nest, a, web,
friendship to emphasize in S2, which results in “The bird a nest , the spider a web , man friendship . ”.
Instead, the gold generates “The bird a nest , the spider a web , man friendship . ”, and it seems that our
model’s result is also valuable.

Third, the DistilBERT models achieve high performance despite its small number of model parameters.
We conjecture that the distillation techniques applied to build the DistilBERT model function as an
ensemble of the attention heads from its parent model. Besides, uncased models show better performance
than cased models. We hypothesize that preserving a word’s capital letters is meaningful when selecting
proper words to be emphasized.

Lastly, ensembling several PLMs is certainly beneficial. We ensemble the top-5 models by averaging
over their e freq values and achieve the 0.6898 ranking score, which is significantly higher than those of
individual PLMs.

(a) DistilBERT-base-uncased (b) BERT-large-uncased

Figure 3: Layer-wise ranking score of DistilBERT-base-uncased and BERT-large-uncased models. Each
dot represents a configuration which records the ranking score above that of the random baseline. Dotted
lines correspond to the ranking score of TF-IDF baseline.

For further analysis, we investigate how many attention heads are capable of selecting proper words
to emphasize. In the case of the top-2 models (DistilBERT-base-uncased and BERT-large-uncased), we
probe the layer-wise ranking scores of individual attention heads. We find that there exist attention heads
specialized for word emphasis (ones recording high ranking scores). For both cases, it seems that there
is a gap between topmost attention heads and the others. For instance, the configuration with secondary
ranking score reports 0.5975, which is 0.0445 lower than the score of top-1 in the BERT-large-uncased
model.

5 Conclusion

We have proposed a zero-shot emphasis selection method, focusing on investigating whether pre-trained
language models contain enough knowledge to select proper words to be emphasized. We have found that
some PLMs report comparable performance, confirming that some specialized attention heads of PLMs
have ability to detect meaningful words.
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