
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1331–1341
Barcelona, Spain (Online), December 12, 2020.

1331

Voice@SRIB at SemEval-2020 Tasks 9 and 12: Stacked Ensembling
method for Sentiment and Offensiveness detection in Social Media

Abhishek Singh
Samsung R&D Bangalore

abhi3.singh@samsung.com

Surya Pratap Singh Parmar
Samsung R&D Bangalore

s.singhparm@samsung.com

Abstract

In social-media platforms such as Twitter, Facebook, and Reddit, people prefer to use code-mixed
language such as Spanish-English, Hindi-English to express their opinions. In this paper, we
describe different models we used, using the external dataset to train embeddings, ensembling
methods for Sentimix, and OffensEval tasks. The use of pre-trained embeddings usually helps in
multiple tasks such as sentence classification, and machine translation. In this experiment, we have
used our trained code-mixed embeddings and twitter pre-trained embeddings to SemEval tasks.
We evaluate our models on macro F1-score, precision, accuracy, and recall on the datasets. We
intend to show that hyper-parameter tuning and data pre-processing steps help a lot in improving
the scores. In our experiments, we are able to achieve 0.886 F1-Macro on OffenEval Greek
language subtask post-evaluation, whereas the highest is 0.852 during the Evaluation Period.
We stood third in Spanglish competition with our best F1-score of 0.756. Codalab username is
asking28.

1 Introduction

SemEval Task-9 Sentimix (Patwa et al., 2020) is divided into two tasks, one for Hinglish (Hindi-English)
and the other for Spanglish (Spanish-English) code-mixed subtasks. In the Spanglish task, the dataset
contains tweets in Spanglish (Spanish-English) code-mixed language, and it is labeled into three categories
positive, negative, and neutral sentiments. The task is to classify codemixed tweets into these three
sentiments. SemEval Task-12 OffensEval (Zampieri et al., 2020) is divided into different subtasks,
English (Rosenthal et al., 2020), Danish (Sigurbergsson and Derczynski, 2020), Arabic (Mubarak et
al., 2020), Turkish (Çöltekin, 2020), and Greek (Pitenis et al., 2020) languages. English task is divided
into three subtasks- A, B, and C. Subtask-A of OffensEval is offensive language identification, subtask-
B is categorization of offensive types into targeted and untargeted, and subtask-C is offensive target
identification as individual, group, or other.

In the last decade, there has been proliferation in the use of social media web sites. It has led to
pervasive use of hate inducing speech and offensive language to express opinions. The use of profane
language has been growing in face-to-face interactions as well as online communications in recent years.
The anonymity provided by these websites and lack of stringent action has led to adoption aggressive
behavior by people.Youth who experienced cyberbullying, as either an offender or a victim, had more
suicidal thoughts and were more likely to attempt suicide than those who had not experienced such forms
of peer aggression (Hinduja and Patchin, 2010). Hence it’s necessary to auto-remove offensive and profane
language in an online environment.

Since the inflow of such type of content is huge, manual filtering is time-consuming and requires much
manual labor; hence it becomes almost impractical to do manual filtering. Due to this reason, researchers
have proposed methods to automate filtering process by training machine learning models in pre-annotated
datasets hate speech and offensive language by (Davidson et al., 2017a) (Malmasi and Zampieri, 2017) ,
cyberbullying (Xu et al., 2012) and detection of racism by (Tulkens et al., 2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1332

In this work (team name is SRIB2020), we try to classify twitter tweets in different languages code-
mixed for Sentimix tasks and Monolingual tweets in different languages in the OffensEval task into
different classes. In OffensEval tasks, tweets are classified as offensive or non-offensive, whereas in the
Sentimix task, tweets are classified as positive, negative, and neutral. In the Sentimix task, the “neutral”
class is bit ambiguous as many positive tweets in the dataset are labeled as neutral, and negative tweets
are labeled as neutral. Class “neutral” has a very thin boundary with the other two classes, “positive” and
“negative”.

1. ID-7229 - WOO hoo Cricket world cup starts today. Good luck to host @englandcricket hope for a
good start. - This sentence is positive in tone, but it is labeled as neutral.

2. ID-8199- @hardikpandya7 best wishes for WorldCup and Eid-Mubarak from MUJAFFAR Hasan
National General Secretary LJP URL- This tweet is positive in its sentiment but is labeled as neutral.

(Lal et al., 2019) first generates subword level representations for the sentences using a CNN architecture.
The generated representations are used as inputs to a Dual Encoder Network, consisting of two different
BiLSTMs - the Collective and Specific Encoder. The Collective Encoder captures the overall sentiment
of the sentence, while the Specific Encoder utilizes an attention mechanism to focus on individual
sentiment-bearing sub-words. (Sharma et al., 2016)have annotated the data, developed a language
identifier, a normalizer, a part-of-speech tagger, and a shallow parser for sentiment analysis of code-mixed
data. (Pravalika et al., 2017) used a lexicon lookup approach to perform domain-specific sentiment
analysis. (Joshi et al., 2016) introduce learning sub-word level representations in LSTM (Subword-
LSTM) architecture instead of character-level or word-level representations; this enables to learn the
information about sentiment value of meaningful morphemes. (Choudhary et al., 2018) uses the shared
parameters of siamese networks to map the sentences of code-mixed and standard languages to a common
sentiment space. They introduce a primary clustering-based preprocessing method to capture variations of
code-mixed transliterated words.

Supervised learning techniques for hate detection, offensive detection, and target and sentiment classifi-
cation on social media datasets have been explored in recent times. (Davidson et al., 2017b) described a
way of multi-class classification of offensive language and hate speech in tweets, using SVM, random
forest, naive Bayes, and Logistic Regression. (Del Vigna12 et al., 2017) reported performance for a
simple LSTM classifier not better than an ordinary SVM, when evaluated on a small sample of Facebook
data for only two classes (Hate, No-Hate), and three different levels of strength of hatred. (Pitsilis et al.,
2018) propose a detection scheme that is an ensemble of Recurrent Neural Network (RNN) classifiers. It
incorporates various features associated with user-related information, such as the users’ tendency towards
racism or sexism.

This paper can be summarised into five key points-

1. Applied a variation of Focal Loss by applying class weight along with Gamma parameter in the loss
function.

2. Applied multiple preprocessing on the raw text, since in social media platforms people tend to use
incorrect grammatical forms and incorrect spellings, it helped us to increase F1 scores.

3. For Hinglish subtask we trained our own word embedding by collecting code-mixed datasets from
multiple sources.

4. Ensemble model made of multiple deep-learning based models, CNN, LSTM, and Sequential
self-attention on LSTM.

5. Comparing model performance on different Machine Learning and Deep Learning models.

Rest of the paper is organized as follows: Section-2 presents the methodology in our paper, data de-
scription, pre-processing steps, model description, and parameter tuning. Section-3 presents various



1333

experiments performed on different models and their results. Finally in Section-4 conclusion based on
experiments performed and the future work is discussed. Code is available at github1.

2 Methodology

2.1 Data Description
1. Sentimix Tasks-

• Hinglish test set 3000 unlabeled tweets.
• Spanglish test data contains 3789 unlabelled tweets.

Positive
Train/Dev

Negative
Train/Dev

Neutral
Train/Dev

Total
Train/Dev

Hinglish 4634/982 4102/1128 5264/890 14000/3000
Spanglish 6005/1498 2023/506 3974/994 12002/2998

Table 1: Training and Dev data distribution Sentimix

2. Offenseval Tasks-

Offenseval English task is divided into three subtasks A, B, and C.

Train Test
Eng. SubTask-A 8696199 3877
Eng. SubTask-B 188974 1722
Eng. Subtask-C 188974 1722
Danish 2961 329
Turkish 31756 3528
Greek 8743 1544
Arabic 7000 2000

Table 2: OffensEval data distribution

2.2 Data Preprocessing
Hinglish Data Processing

• In Demojisation step, different types of emojis present in the corpus is converted into corresponding
text representation. Since these combined datasets contain large number of tweets and contain differ-
ent types of emojis, it becomes necessary to convert emojis into corresponding text representations
using the cheatsheet list 2.

• Removing different types of patterns such as URLs were replaced with URL token in the dataset,
@USERNAME was converted to USER token and hashtags, # symbol was removed from the dataset.
The dataset is cleaned for different punctuation marks, as punctuation marks are not needed to train
the embeddings.

• Acronyms and Contractions were replaced with their corresponding English words. We replace it
by creating a dictionary of acronyms and contractions mapping to their expanded form. Acronyms
such as 4ever are converted to forever, abt to about, cb to comeback, etc. These acronyms are
commonly used in social media platforms. Contractions such as can’t, aren’t, i’ve, etc. were again
converted to their corresponding text cannot, are not, and I have for this case.

1https://github.com/asking28/sentimix2020
2https://www.webfx.com/tools/emoji-cheat-sheet/

https://github.com/asking28/sentimix2020
https://www.webfx.com/tools/emoji-cheat-sheet/


1334

Spanglish Data Processing- The NLTK Snowball Stemmer 3 package was used because it offers to stem
in both English and Spanish. The flexibility to use the stemmer in both languages played a key role in the
Spanglish Sentiment Analysis system. The list of stop words was constructed from the stop words corpus
provided in NLTK. While pre-processing tokenized tweets, any word included in the NLTK English stop
word corpus is excluded. Close attention is paid to elongated words (i.e. – “helloooooo” , “orrrrrale”),
and after considering possible features of elongated words, spelling normalization is applied to these
tokens. It would also be beneficial to apply spelling normalization to slang or purposely misspelled
words that are common in tweets or other informally written texts. We removed character repetition by
removing characters that occurred more than two times continuously. Emoticons are replaced with their
corresponding text in the tweets.

English Data Preprocessing- Pre-processing steps such as emoticon replacement, contraction re-
placement, acronym replacements are done in a similar manner as in previous datasets. In social media
platforms, people tend to use short forms such as forget maybe written as frgt. So to deal with this
problem we have applied multiple spell correction steps. We have used PySpellchecker 4, it uses a
Levenshtein Distance algorithm to find permutations within an edit distance of 2 from the original word.
Then it compares all permutations (insertions, deletions, replacements, and transpositions) to known
words in a word frequency list. Those words that are found more often in the frequency list are more
likely the correct results. Then we delete characters having more than two continuous occurrences, as it is
very rare that a character occurs more than twice continuously.

Turkish Data preprocessing- We have followed pre-processing steps as mentioned above with an
extra step of Turkish word lemmatization using lemmatization model by (Sak et al., 2008) which is trained
by nearly one million Turkish sentences.

Arabic, Danish, and Greek Data processing- Arabic data is first transliterated to Roman script using
Classic Language Toolkit (CLTK)5 and then all the steps used for other languages are applied to datasets.
Danish data was used as it is. We applied Greek Stemmer from 6 for Greek language competition, and
then followed pre-processing steps as described above.

2.3 Model Description
We have used Ensemble model for all of the tasks mentioned above by combining CNN, self-attention,
and LSTM based model.

Algorithm 1: Stacking Ensemble Algorithm
1: Input: training data D= {xi, yi}mi=1

2: Output: Ensemble classifier H
3: Step 1: Learn base level classifiers
4: for t=1 to T do:
5: learn ht based on dataset D
6: end for
7: Step 2: Construct new dataset of predictions
8: for i=1 to m do:
9: Dh= {x′i, yi}, where x′i = {h1(xi), h2(xi), ..., hT (xi)}

10: end for
11: Step 3: Learn a meta classifier H
12: learn H based on Dh

13: return H

In the above algorithm, T base level classifiers are trained on training dataset D. These base classifiers
are named as ht, where t ranges from 1 to T. In step two new dataset Dh is created for meta classifier

3https://www.nltk.org/_modules/nltk/stem/snowball.html
4https://github.com/barrust/pyspellchecker
5http://docs.cltk.org/en/latest/
6https://deixto.com/greek-stemmer/

https://www.nltk.org/_modules/nltk/stem/snowball.html
https://github.com/barrust/pyspellchecker
http://docs.cltk.org/en/latest/
https://deixto.com/greek-stemmer/


1335

Figure 1: Ensemble Model

where input is taken as base classifiers’ output and model output as yi. Once the dataset is created meta
classifier “H” is trained on dataset Dh. In the end, algorithm returns trained meta-classifier “H”.

Stacking ensemble model is used for training RNN, CNN, Sequential self-attention with LSTM based
architecture together in our model. In stacking, the algorithm takes output of sub-models as inputs and
attempts to learn how to best combine inputs to get better output results. The idea of stacking is to
learn several weak learners and combine them by training a meta-model to output predictions based on
multiple predictions returned by these weak models (Zhou, 2012). In the above algorithm we have three
different Deep Learning models with labeled tweets separately. Then output of these models are used as
independent variable for stacked model training and labels are same as previous steps.

2.4 Parameters and Hyper-Parameters tuning of models

2.4.1 LSTM

After preprocessing, dataset is split into two parts i.e. training set= 90%, and validation set=10%. For
Recurrent Neural Network based model, we have used single LSTM layer with 256 cell units and then
MaxPooling Layer to get maximum of all the tokens and then four dense layers with Dropout (dropout
rate = 0.3) and BatchNormalization. Final layer is softmax or sigmoid layer depending upon the task.
Softmax is used in Sentimix tasks and OffensEval English Subtask-C, and for rest of the subtasks sigloid
is used. Model is trained on Focal loss function (Lin et al., 2017), Adam optimizer (Kingma and Ba,
2014), and metrics as accuracy and F1-score. Since maximum number of characters in a tweet are limited
to 140 characters including space, we have taken the maximum number of words in a sentence to be 25
considering average lengths of words to be 5 and 3 to 4 spaces.

2.4.2 CNN

A stack of convolutional neural networks (CNN) is used for capturing the hierarchical hidden relations
among embedding features. We trained data using CNN model with three convolution layer having filter
sizes of (3,4, and 5) respectively, three max pooling layers with filter size of 2 and stride of 2, dense layers
of size 4096 and 2048 with Dropout rate of 0.2. Dense layer is connected to softmax or sigmoid layer
depending upon the task. Model is trained on Focal loss function (Lin et al., 2017), Adam optimizer
(Kingma and Ba, 2014), and metrics as accuracy and F1-score. Tweets are padded in same way as in
LSTM model.



1336

2.4.3 Sequential self-attention model
We have used attention as explained in (Bahdanau et al., 2014), after Gated Recurrent Unit layer (Chung
et al., 2014) by returning cell outputs from each steps. This model has 256 GRU cells and each cells
return output state which are then fed to self-attention layer. Then there are same number of Dense layers
and dropout rate as used in LSTM model. Rest parameters are same as in LSTM layer.

3 Experiments and Results

We performed our experiments on three Deep-Learning Models CNN, LSTM, and ensemble of CNN,
LSTM, and self-attention. In Spanglish, we achieved F1-Macro of 0.770, precision of 0.749, and recall of
0.803 with Ensemble model on pre-processed data, whereas it was 0.709, 0.755 and 0.672 respectively
for raw text without pre-processing of the data. In Hinglish challenge, Ensemble model out performed
other models on pre-processed dataset. Ensemble model on pre-processed data achieved F1-score of
0.682, precision of 0.695 and recall of 0.679 whereas same model when trained on raw data achieved
0.665, 0.681 and 0.665 respectively. From these results we can infer that cleaning steps involved helped
to improve the results . We have also experimented our models with and without pretrained Embeddings
in Hinglish task but it did not help in improving the scores. We trained Hinglish embeddings by collecting
code mixed Hinglish data from various sources such as blogs and scraping twitter data using Fasttext
library (Bojanowski et al., 2016). Post evaluation on Spanglish task was not performed since gold labels
were not released after the competition. Error analysis of Hinglish and Spanglish tasks is presented in
Appendix A and B respectively.

Bert multilingual and Bert-uncased mode (Devlin et al., 2018) are trained and fine-tuned by adding
three delta layers (dense) layers on top of pre-trained models. We trained Bert model using both ways
one by freezing Bert pre-trained parameters and other by keeping parameters as trainable during the
complete training process. From our experiments on Hinglish and Spanglish datasets using these models
and techniques 7 we found that Bert-uncased model performed better than the Bert-multilingual model.
Keeping the pre-trained parameters of Bert as trainable during the complete process performed better than
freezing the Bert parameters during fine-tuning. We attribute this behavior of Bert to the difference in data
distributions of Bert pre-training and Sentimix tasks.

5 10 15 20
epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

L
o
s
s

(a) Loss

5 10 15 20
epochs

0.4

0.5

0.6

0.7

0.8

L
o
ss

freeze train
freeze val
complete train
complete val

(b) Accuracy

Figure 2: Bert Model Performance on Hinglish Dataset

In Offenseval tasks, we performed post-evaluation experiments by tuning only few hyper-parameters in
the model like changing class-weights and changing loss function. In Greek language subtask our model8

7https://github.com/asking28/sentimix2020/blob/master/multilingual_bert.py
8https://github.com/asking28/offenseval2020/blob/master/offens_2020_greek.ipynb

https://github.com/asking28/sentimix2020/blob/master/multilingual_bert.py
https://github.com/asking28/offenseval2020/blob/master/offens_2020_greek.ipynb


1337

CNN LSTM Ensemble
Results on Hinglish dataset

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
E
v
a
lu
a
ti
o
n
 M

e
tr
ic

RT f1
PT f1
RT prec
PT prec
RT rec
PT rec

CNN LSTM Ensemble
Results on Spanglish dataset

0.55

0.60

0.65

0.70

0.75

0.80

E
v
a
lu
a
ti
o
n
 M

e
tr
ic

RT f1
PT f1
RT prec
PT prec
RT rec
PT rec

Figure 3: Above plots show F1, Precision and recall when trained on LSTM, CNN and Ensemble models.
Here f1 represents F1-macro, prec represents Precision, rec represents Recall, RT represents Raw Text,
and PT represents Pre-processed Text.

Raw
(F1-Macro)

processed
(F1-Macro)

Raw
(Precision)

Processed
(Precision)

Text
(Recall)

Processed
(Recall)

CNN 0.595 0.6747 0.737 0.742 0.517 0.624
LSTM 0.630 0.6913 0.795 0.761 0.542 0.640

Ensemble 0.709 0.770 0.755 0.749 0.672 0.803

Table 3: Spanglish Testset Evaluation

achieved F1-score of 0.886, which is more than the highest F1-score of 0.852 achieved during evaluation
period. In English Subtask-B, our model9 is able to achieve F1-score of 0.685 in post-evaluation, which
was 0.580 in Evaluation period. In Subtask-A and C F1-score in post-evaluation period is 0.9084 and
0.5106 respectively, with very small difference from evaluation period. In Danish task, our model10

was able to achieve F1-score of 0.6585 in post evaluation period and 0.613 during evaluation period.
For Turkish and Arabic tasks there is small difference in the results in evaluation and post-evaluation
experiments. Error analysis of English subtasks B and C are presented in Appendix C, D respectively.

9https://github.com/asking28/offenseval2020/blob/master/offens_task2_bilstm_
attention.ipynb

10https://github.com/asking28/offenseval2020/blob/master/offens_2020_danish.ipynb

https://github.com/asking28/offenseval2020/blob/master/offens_task2_bilstm_attention.ipynb
https://github.com/asking28/offenseval2020/blob/master/offens_task2_bilstm_attention.ipynb
https://github.com/asking28/offenseval2020/blob/master/offens_2020_danish.ipynb


1338

Raw Text
(F1-Macro)

Processed
(F1-Macro)

Raw Text
(Precision)

Processed
(Precision)

Raw Text
(Recall)

Processed
(Recall)

CNN 0.632 0.660 0.633 0.660 0.517 0.662
LSTM 0.654 0.673 0.659 0.679 0.654 0.670

Ensemble 0.665 0.682 0.681 0.695 0.665 0.679

Table 4: Hinglish Testset Evaluation

English
Subtask-A

English
Subtask-B

English
Subtask-C Turkish Arabic Danish Greek

Precision 0.8891 0.7028 0.5268 0.721 0.8014 0.643 0.882
Recall 0.9437 0.6813 0.5013 0.707 0.8092 0.683 0.889
F1-Score 0.9084 0.6855 0.5106 0.713 0.8052 0.6585 0.886

Table 5: Offenseval Testset Post Evaluation

Precision Recall F1-score
Post eval Results on Offenseval dataset

0.5

0.6

0.7

0.8

0.9

Ev
al
ua

ti
on

 M
et
ri
c

Eng A
Eng B
Eng C
Turkish
Arabic
Danish
Greek

Figure 4: This plot represents Precision, Recall and F1-score for all the OffensEval tasks. Eng A represents
English Subtask-A and so on.

English
Subtask-A
(F1-Macro)

English
Subtask-B
(F1-Macro)

English
Subtask-C
(F1-Macro)

Turkish
(F1)

Arabic
(F1)

Danish
(F1)

0.905 0.580 0.514 0.699 0.800 0.613

Table 6: Offenseval Testset Evaluation

4 Conclusion and Future work

In this paper, we present description of the system that we have used in all OffensEval and Sentimix tasks.
With our best model we were able to achieve third position in Spanglish task in evaluation period. In
post evaluation experiments our model is able to achieve F1-score more than the highest score in Greek
task evaluation period. From our experiments, we have found that pre-processing steps played a huge
role in increasing F1-scores. Since we have used deep learning models, our model could not perform
very well in the tasks where dataset was small like in English Subtask-C. In this work paper we present



1339

different data pre-processing steps that played important role. In English Subtasks we experimented with
pre-trained Embeddings 11 trained in twitter corpus, and found that pre-trained embeddings helped to
increase F1-score in English sub-tasks but did not help in Hinglish task. The results obtained through our
experiments in test data are lower than the results obtained in development set data. We inferred from
our experiments that F1-score partly depends upon data distribution of different classes in training and
development data which is used to tune hyper-parameters. In most of the tasks, data is not distributed
equally among different classes. Exploratory data analysis reveals that there is huge difference in class
distribution in the datasets.

Our system presents a solid baseline for Sentiment analysis of code-mixed languages and Offensiveness
detection in multiple languages. In our future work, we plan to add handcrafted features along with
current features and train it on different machine learning models. We also plan to explore techniques
of data augmentation as Deep learning models need large amount of data to train. Corpus used to train
code-mixed language models and languages other than English is very small as compared to corpus used
to train English language models. Lot of research needs to be done in this direction.

5 Acknowledgement

We deeply thank Ashutosh Singh, Gaurav Kumar, Himanshu Mangla, Suraj Tripathi, and Dr.Tribikram
Pradhan for reviewing our work. These experiments have been performed on Google Colab. We thank
Colab for providing GPUs and RAM free of cost.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606.

Çağrı Çöltekin. 2020. A Corpus of Turkish Offensive Language on Social Media. In Proceedings of the 12th
International Conference on Language Resources and Evaluation. ELRA.

Nurendra Choudhary, Rajat Singh, Ishita Bindlish, and Manish Shrivastava. 2018. Sentiment analysis of code-
mixed languages leveraging resource rich languages. arXiv preprint arXiv:1804.00806.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017a. Automated hate speech detection
and the problem of offensive language. In Proceedings of the 11th International AAAI Conference on Web and
Social Media, ICWSM ’17, pages 512–515.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017b. Automated hate speech detection
and the problem of offensive language. In Eleventh international aaai conference on web and social media.

Fabio Del Vigna12, Andrea Cimino23, Felice Dell’Orletta, Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on facebook. In Proceedings of the First Italian Conference on
Cybersecurity (ITASEC17), pages 86–95.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Sameer Hinduja and Justin Patchin. 2010. Bullying, cyberbullying, and suicide. Archives of suicide research :
official journal of the International Academy for Suicide Research, 14:206–21, 07.

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and Vasudeva Varma. 2016. Towards sub-word level com-
positions for sentiment analysis of hindi-english code mixed text. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages 2482–2491.

11https://github.com/FredericGodin/TwitterEmbeddings

https://github.com/FredericGodin/TwitterEmbeddings


1340

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yash Kumar Lal, Vaibhav Kumar, Mrinal Dhar, Manish Shrivastava, and Philipp Koehn. 2019. De-mixing senti-
ment from code-mixed text. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 371–377.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988.

Shervin Malmasi and Marcos Zampieri. 2017. Detecting hate speech in social media. CoRR, abs/1712.06427.

Hamdy Mubarak, Ammar Rashed, Kareem Darwish, Younes Samih, and Ahmed Abdelali. 2020. Arabic offensive
language on twitter: Analysis and experiments. arXiv preprint arXiv:2004.02192.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy Chakraborty,
Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets. In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

Zeses Pitenis, Marcos Zampieri, and Tharindu Ranasinghe. 2020. Offensive Language Identification in Greek. In
Proceedings of the 12th Language Resources and Evaluation Conference. ELRA.

Georgios K Pitsilis, Heri Ramampiaro, and Helge Langseth. 2018. Detecting offensive language in tweets using
deep learning. arXiv preprint arXiv:1801.04433.

A Pravalika, Vishvesh Oza, NP Meghana, and S Sowmya Kamath. 2017. Domain-specific sentiment analysis
approaches for code-mixed social network data. In 2017 8th international conference on computing, communi-
cation and networking technologies (ICCCNT), pages 1–6. IEEE.

Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Marcos Zampieri, and Preslav Nakov. 2020. A Large-Scale
Semi-Supervised Dataset for Offensive Language Identification. In arxiv.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008. Turkish language resources: Morphological parser, mor-
phological disambiguator and web corpus. In International Conference on Natural Language Processing, pages
417–427. Springer.

Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush Bansal, Manish Srivastava, Radhika Mamidi, and Dipti M
Sharma. 2016. Shallow parsing pipeline for hindi-english code-mixed social media text. arXiv preprint
arXiv:1604.03136.

Gudbjartur Ingi Sigurbergsson and Leon Derczynski. 2020. Offensive Language and Hate Speech Detection for
Danish. In Proceedings of the 12th Language Resources and Evaluation Conference. ELRA.

Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben Verhoeven, and Walter Daelemans. 2016. A dictionary-based
approach to racism detection in dutch social media. CoRR, abs/1608.08738.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy Bellmore. 2012. Learning from bullying traces in social
media. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL HLT ’12, pages 656–666, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Hamdy Mubarak, Leon
Derczynski, Zeses Pitenis, and Çağrı Çöltekin. 2020. SemEval-2020 Task 12: Multilingual Offensive Language
Identification in Social Media (OffensEval 2020). In Proceedings of SemEval.

Zhi-Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, 1st edition.

Appendices
A Hinglish Error Analysis

This section presents the cases where the model did not give correct predictions and their possible
reasoning. During the analysis of the Hinglish dataset on cross-validation data of 1869 tweets 40% tweets



1341

were incorrectly predicted. Our study found that in most cases, either predicted class or ground truth
class were labeled as neutral. In the hinglish dataset, our model failed to predict 747 tweets out of 1869
tweets in the validation dataset, and out of 747 tweets, 618 tweets (82%) were labeled as “neutral” in
either ground truth labels or predicted labels. From this, we can say that “neutral” class is a bit ambiguous
in the Sentimix dataset. Consider a tweet- “rubika di umar mein aap se kaafi chota hun par am big fan of
yours kabhi naseeb ne chaha to ”. It is labelled as “neutral” whereas we feel that it should be labeled as
“positive”. In most of the cases, our proposed model gets confused when it is/can be labeled as “neutral”.

B Spanglish Error analysis

We found the same distribution in the Spanglish dataset. We performed validation in 2998 tweets, out of
which 1025 were erroneous predictions. Out of 1025 tweets, 764 (74%) of the tweets were labeled as
“neutral” in either predicted or ground-truth class. Hence from our analysis, we found that labeling a tweet
as “neutral” is somewhat ambiguous even for human annotators.

C OffensEval English Subtask-B Error Analysis

We analyzed the categorization of offensive tweets on 37795 tweets as validation data. Out of this
validation set, we got 7339 incorrect predictions, and out of these inaccurate predictions, 6912 tweets
labeled as “targeted” were incorrectly predicted as “Un-Targeted”. Most of the targeted tweets have
pronouns like “you, your, they, them, ur, u, she, her, these, him, his, he”, contain names of personalities
who is targeted, and words like “people, bitch, boys, girls, variations of nigga ”. Our model is biased
towards such kind of words in a sentence. It can predict a sentence as “targeted”, which contains such
type of terms. We feel that the dataset includes some incorrect labels, for example - “might fuck around
and sleep without my feet covered”. It is not explicitly directed towards a person or a group. Our model
sometimes fails to identify tweets directly targeting with names; for example, “This is some high level
shit. Someone needs to dumb it down for Trump voters”. In most of the cases where our model fails
to determine a tweet as targeted, the target is from “others” category where the objective is some event,
situation, organization or an issue for example- “And here’s another fucking breakdown”, “I’m sick of it
all, April to August has been utter bullshit”.

D OffensEval English Subtask-C Error Analysis

We analyzed target identification of OffensEval English subtask-C on 213 targeted tweets validation set.
Out of 213 validation data points, 64 tweets’ target is incorrectly predicted by our model. In this dataset we
found that targets of some tweets are incorrectly labeled for example - “he should be ashamed of himself
but he’s not because he’s #zionel” is targeted towards an individual but labeled as other in the dataset
and “#arunjaitleystepdown he is most shameless #fm in history of india and audacity and shamelessness
with which is lies in public is disgrace to post.” is labeled as “Group” targeted but it is targeted towards
an individual. Our model is able to classify these tweets as targeted towards an “Individual” correctly.
Our model may be biased towards some pronouns, for example- “Dollar for a phone. you all are fucking
dumb.” is classified as “Individual” targeted, but its correct label is “Group” targeted possibly due to the
presence of “you” in the sentence. Also in tweet “anyway this game sucks”, model predicts as “Individual”
targeted possibly because it is not able to decode what “this” refers to in the context, here “this” refers to
an event “game”.


	Introduction
	Methodology
	Data Description
	Data Preprocessing
	Model Description
	Parameters and Hyper-Parameters tuning of models
	LSTM
	CNN
	Sequential self-attention model


	Experiments and Results
	Conclusion and Future work
	Acknowledgement
	Hinglish Error Analysis
	Spanglish Error analysis
	OffensEval English Subtask-B Error Analysis
	OffensEval English Subtask-C Error Analysis

