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Abstract

Code-mixing is a phenomenon which arises mainly in multilingual societies. Multilingual peo-
ple, who are well versed in their native languages and also English speakers, tend to code-mix
using English-based phonetic typing and the insertion of anglicisms in their main language. This
linguistic phenomenon poses a great challenge to conventional NLP domains such as Sentiment
Analysis, Machine Translation, and Text Summarization, to name a few. In this work, we fo-
cus on working out a plausible solution to the domain of Code-Mixed Sentiment Analysis. This
work was done as participation in the SemEval-2020 Sentimix Task, where we focused on the
sentiment analysis of English-Hindi code-mixed sentences. our username for the submission
was “’sainik.mahata” and team name was "JUNLP”. We used feature extraction algorithms in
conjunction with traditional machine learning algorithms such as SVR and Grid Search in an
attempt to solve the task. Our approach garnered an f1-score of 66.2% when tested using metrics
prepared by the organizers of the task.

1 Introduction

India has a linguistically diverse population due to its long history of foreign acquaintances. English,
one of those borrowed languages, became an integral part of the education system and hence gave rise
to a population who are very comfortable using bilingualism in their day to day communication. Due to
such language diversity and dialects, frequent code-mixing is encountered during conversations. Further,
due to the emergence of social media, the practice has become even more widespread. The phenomenon
is so common that it is often considered as a different (emerging) variety of the language, e.g., Benglish
(Bengali-English) and Hinglish (Hindi-English).

This phenomenon poses a great challenge to the existing domains of Natural Language Processing
(NLP) such as Sentiment Analysis as primarily the language technologies, such as parsing, Parts-of-
Speech (POS) tagging, etc., are built for English. Furthermore, labeled/annotated data of such category
are hard to come by and hence leads to misfiring when using straight-forward machine learning algo-
rithms.

In this work, we participated in SemEval-2020 Sentimix Task' and attempted to solve the chore of
sentiment analysis of English-Hindi code-mixed sentences.

Initially, our approach includes the use of feature extraction algorithms on the data, procured by the
organizers. Thereafter, we used Support Vector Regression coupled with Grid Search algorithm to clas-
sify the code-mixed sentences to its respective sentiment class. This approach, when tested using the
metrics prepared by the organizers, returned an f1-score of 66.2%.

The rest of the paper is organized as follows. Section 2 briefly the quantifies the English-Hindi code-
mixed data procured by the organizers of the task. Section 3 provides a descriptive literature of our
proposed approach. This will be followed by the results and concluding remarks in Section 4 and 5.
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2 Data

The English-Hindi code-mixed data that was used to train our model was collected from Twitter using
the Twitter API, by searching for code-mixed Hindi keywords (Patwa et al., 2020). The sentiment labels
are positive, negative, and neutral. Besides the sentiment labels, the language labels for every word of
the code-mixed sentence were also provided. The word-level language tags were ENG (English), HIN
(Hindi), and O (Other) for symbols, mentions, and hashtags.

The organizers provided a trial and a training data set and after adding both, we could gather 17,000
code-mixed instances. We further divided this data into two parts; (i.) 15,000 instances as training data
and (ii.) 2,000 instances as validation data.

3 Methodology

Our approach included converting the given tweets into a sequence of words and then run the Grid
Search Cross-Validation algorithm on the processed tweet. Initially, the tweets were pre-processed using
methods as done by (Garain and Basu, 2019a) to remove the following:

Removing mentions

Removing punctuation
Removing URLs

Contracting white space
Extracting words from hashtags

M N

The last step consisted of taking advantage of the Pascal Casing of hashtags (e.g. #CoronaVirus). A
simple regex can extract all words. This extraction results in better performance mainly because words
in hashtags, to some extent, may convey sentiments of hate. They play an important role during the
model-training stage.

3.1 Feature Extraction

After obtaining clean tweets, various features were extracted by treating them as a sequence of words.
Some of the features were manually extracted while some were extracted using pre-existing methodolo-
gies like the Bag-of-Words model, GloVe vectors. As our aim is Sentiment Analysis of the texts, so the
presence of hate, offense, humor, etc., may have a great influence on the result. The extracted features
are listed below.

1. TF-IDF Vector features: The TF-IDF feature vectors for the texts as a sequence of word vectors.

2. GloVe Vector features: GloVe vector embeddings for the texts as a sequence of word embeddings.

3. Humour label and score: Whether a text is humorous or not. If humorous what is its score in the
range 0-1.(Garain, 2019)

4. Wordwise sentiment values: List of sentiment values of each word of the text.

Hate and offensiveness labels: Whether the text is offensive or not and if it constitutes hate speech.

6. Frequency of easy and difficult words: Included as a semantic feature for the texts. (Basu et al.,
2019)

e

3.2 Learning Model

Grid search refers to the practice of tuning hyperparameters to determine the most optimal values for a
given model. This has a massive significance as the performance of the entire model is highly dependent
on the hyperparameter values specified.

The estimator parameter of the Grid Search Cross-Validation process requires the model that has been
used for the hyperparameter tuning process. Here the model used is the linear and the RBF kernels of
the estimator Support Vector Regression model (SVR).

This process requires certain parameters to be taken as manual input. The param_grid parameter itself
in turn requires a list of parameters and the range of values for each parameter of the specified estimator.
The flow diagram has been shown in Fig 1(Wang et al., 2019):
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Figure 1: Grid Search parameter optimization overview

The SVR was fed with parameter values of

e C=best_params[’C”] e epsilon=best_params[”epsilon”]
e gamma=best_params[’gamma”] e cache_size=200

e coef0=0.1 e decision_function_shape="ovr’
e kernel=[’linear’,’rbf’] e max_iter=-1

e probability=False e random_state=None

e shrinking=True e t0]=.001

e verbose=False
Class weight and degree were set to Ellipsis.
The most significant parameters required when working with the RBF kernel of the SVR model were
”c”, ”gamma” and “epsilon”. A list of values to choose from has been given to each hyperparameter of
the model.

For the GridSearchCV algorithm, parameters like error_score, iid, param_grid, pre_dispatch, refit, re-
turn_train_score, scoring, and verbose were set to Ellipsis.

A cross validation process is performed in order to determine the hyper parameter value set which
provides the best f1-score levels. The parameters for hyper-parameter selection are as follows:

e mean_fit_time e mean_score_time

e mean_test_score e mean_train_score
e param_C e param _kernel

e params e rank _test_score

o split0_test_score e split0_train_score
e splitl_test_score o split] _train_score
e split2_test_score e split_train_score
o std_fit_time o std_score_time

e std_test_score e std_train_score

Experimentation has been performed thoroughly and the parameters giving the best results have been
accepted.
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4 Results

The metric for evaluating the participating systems was as follows. The organizers used F1 averaged
across the positives, negatives, and the neutral. The final ranking was based on the average F1 score. Our
submitted system garnered an F1 score of 66.2%. The detailed results are shown in Table 1:

Class Precision | Recall | F1-score | Support
negative 0.68 0.68 0.68 900
neutral 0.57 0.59 0.58 1100
positive 0.75 0.72 0.74 1000
Macro avg. | 0.66 0.66 0.662 3000

Table 1: Class wise full result metrics

5 Conclusion

In the current work, we attempted to solve the problem of Sentiment Analysis of code-mixed English-
Hindi data, while participating in the SemEval shared task. Our system was based on using traditional
machine learning algorithms coupled with Beam Search Cross-Validation. Our system, when evaluated
by the organizers garnered an F1 score of 0.662. There was an option of developing an unconstrained
system, but we only used the provided data to develop the system. As future work, we would like to
increase this data, use state-of-the-art Neural Network architectures on this data, taking into advantage
the concept, matrix and embedded language, SentiWordNet, and other NLP features.
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