
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1247–1252
Barcelona, Spain (Online), December 12, 2020.

1247

gundapusunil at SemEval-2020 Task 9: Syntactic Semantic LSTM
Architecture for SENTIment Analysis of Code-MIXed Data

Sunil Gundapu
Language Technologies Research Centre

KCIS, IIIT Hyderabad
Telangana, India

sunil.g@research.iiit.ac.in

Radhika Mamidi
Language Technologies Research Centre

KCIS, IIIT Hyderabad
Telangana, India

radhika.mamidi@iiit.ac.in

Abstract

The phenomenon of mixing the vocabulary and syntax of multiple languages within the same
utterance is called Code-Mixing. This is more evident in multilingual societies. In this paper,
we have developed a system for SemEval 2020: Task 9 on Sentiment Analysis for Code-Mixed
Social Media Text. Our system first generates two types of embeddings for the social media text.
In those, the first one is character level embeddings to encode the character level information
and to handle the out-of-vocabulary entries and the second one is FastText word embeddings for
capturing morphology and semantics. These two embeddings were passed to the LSTM network
and the system outperformed the baseline model.

1 Introduction

Code-Mixing is a phenomenon which is evident in multilingual societies (Shana Poplack et al., 2003). It
reflects the use of distinct grammatical systems and vocabulary of the languages being used simultaneously
in a single utterance or conversation. This technique used in communication commonly is widely found
today in popular social media platforms like Twitter, Facebook, Instagram in the form of posts, comments,
replies, especially in chats. This is evident in multilingual societies like India, Canada, Ireland, South
Africa, Switzerland, and many others.

India has officially recognized 22 regional languages1. So, in multilingual societies like India, most of
the social media users predominantly integrate the well-known language, like English, with their native
languages. 560 million Internet users2 in India exchange information by mixing their regional languages
with prominent language like English, which produces a huge amount of code-mixed social media corpus.
One such trending combination is the mixing of Hindi and English with the output in Hinglish3 (Hi-En)
code-mixed data. Consider the example sentence which illustrates the code-mixing phenomenon being
addressed in this paper. “Congratulations/Eng Sir/Eng Ji/Hin Dobara/Hin PM/Eng banee/Hin ki/Hin
hardik/Hin subhkamnaye/Hin aapko/Hin ./O”. (Translation into English: Congratulations sir, Best wishes
to become Prime Minister again). The words followed by language tags /Hin, /Eng, and /O correspond to
Hindi, English and Other respectively.

Sentiment analysis of code-mixed data has become a prominent research area in recent times in the field
of NLP. But identifying the sentiment in code-mixed data is hard since it poses the following challenges:
(i) Romanized code-mixed data is noisy and ambiguous in nature. (ii) Accessible datasets are smaller
in size to tune neural networks. (iii) Frequent occurence of non-standard spellings (such as pyaaarr,
goooood). (iv) The phrase/word contractions (cmng for coming, IDK for I don’t know). (v) Spelling
variations. A single word pyaar (love), can be written as “piyar”, “pyaarrrr”, “peyar”, “pyar”, or “piyaar”,
etc. To handle these challenges we postulate that FastText embeddings enrich the word vectors with

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1https://en.wikipedia.org/wiki/Languages of India
2https://www.internetworldstats.com/stats7.htm
3https://en.wikipedia.org/wiki/Hinglish



1248

sub-word information and that character level embeddings should be able to assist deep learning models
to handle unknown Hindi words.

In this paper, we propose models to predict the sentiment label of a given code-mixed tweet/text. The
sentiment labels are positive, negative, or neutral and the code-mixed languages selected are Hindi and
English. This task is conducted in CodaLab4 website and our CodaLab username is gundapusunil.
All our models are trained using only the trained dataset provided by SentiMix organizers. We started
experiments with traditional machine learning models like Logistic Regression, Support Vector Machines
but the f1-score on development set was below 0.63 then we moved to complex models like Long Short
Term Memory (LSTM) based models with different types of word embeddings where we were able to
conquer the baseline model.

Our paper is divided into the following sections: We begin with an introduction to code-mixing and
its challenges in Section 1. Related work of various code-mixing strategies demonstrated in Section
2. Section 3 present the description of SentiMix dataset. We then discuss the pre-processing steps and
compare machine learning and deep learning approaches with baseline model results in Section 4. The
results are reported in Section 5, and Section 6 concludes the paper.

2 Related Work

Several studies have been made in the areas of sentiment analysis and code-mixed data. One of the earlier
studies on code-mixed data was proposed by Gold (1967) with the goal of language identification in which
it was stated that the structure of the language is procured by learning the language structure from the
given text and informant. Braj B., Kachru (1976) described the structure of multilingual languages and
language dependency in linguistic convergence of code-mixing from an Indian Perspective. SentiWordNet
for English language introduced by Esuli and Sebastiani (2006), became the primary source for all sense
based lexical analysis and opinion classification.

Later, researchers have extended the work on machine learning and sentiment analysis methods for
Indian languages. In their study Siersdorfer, Chelaru et al. (2010) used the SVM and Naıve Bayes
classifiers to label millions of comments for sentiment polarity. R. Sharma and P. Bhattacharyya (2014)
developed a lexicon-based sentiment analyzer for product reviews and the same subjective lexicon-based
model has been extended to Punjabi language. For Malayalam movie reviews D. S. Nair, J. P. Jayan et
al. (2014, 2015) initially came up with a rule based system for sentiment analysis, later improved the
system with the support of the machine learning algorithms. MIKE 2015 sentiment analysis task for Hindi
and Bengali used the Multinomial Naive Bayes classifier with the features for building the vector space
constrained by filtering the words based on WordNet.

In recent years, researchers have seen a huge improvement in the task of sentiment analysis of English
as well as Hinglish using deep neural networks. M.G. Jhanwar, A. Das (2018) proposed an ensemble of
character-trigrams based LSTM model and a n-grams based Multinomial Naive Bayes model to classify
the sentiments of Hinglish code-mixed data. Shalini K, Barathi Ganesh HB et al. (2018) addressed the
performance of distributed representation methods in sentiment analysis and reported comparisons among
different machine learning and deep learning techniques. Other attempts include using sub-word level
compositions with LSTMs to capture sentiment at the morpheme level (Joshi et al., 2016). We attempted
to perform SemEval 2020 task-9 (Patwa et al., 2020) with various classification and deep learning models
to analyze the results and also how such models contributed to a great advance in this task.

3 Dataset

In this paper, we used the dataset provided by Task 3: SentiMix in SemEval 2020. The corpus contains a
total of 20000 tweets and it is sub-divided into three sets (train, validation and test). Each corpus except
test contains code-mixed tweets along with their corresponding sentiment labels. These code-mixed
tweets are tokenized into tokens. And the tokens of each tweet are separated by a new line. Each token is
manually annotated with a language identification tag which are: Hindi (Hin), English (Eng), Other (O).

4https://competitions.codalab.org/competitions/20654



1249

Dataset Positive Negative Neutral Total
Train 4634 4102 5264 14000
Valid 982 890 1128 3000
Test 1000 900 1100 3000

20000

Table 1: Dataset Statistics.

Table 1 shows the distribution of sentiment classes in the SentiMix dataset. Table 2 shows some
examples of code-mixed tweets from the SentiMix dataset. Here, the first column contains Hinglish tweet,
the second column contains English translation of tweet, the third column contains sentiment label.

Code-Mixed Tweet Approximate English Translation Sentiment Label
All the best Team India Jeet ke aana Team India all the best, come back with win. Positive
Aap bhi aisa drama kr do kam se km You also do this drama and at least. Negative
Aisa PM naa hua hai aur naa hee hoga Neither there has been a PM like him, nor there will be Positive

Table 2: Example Code-Mixed Tweets.

4 System Architecture

In this section, we present our models that are trained and validated on the SentiMix dataset described
in the previous section. We compare our approach with Machine Learning and Neural Network based
baselines. The full code of system architecture can be found at GitHub5.

4.1 Preprocessing of Code-Mixed tweets
Our code-mixed data consists of excessive noise in the form of punctuations, Uniform Resource Locator
(URL’s), few Devanagari script Hindi words, twitter mentions, hashtags, stop words, etc. In the prepro-
cessing step, we take a stab to overcome the noise in the the data by remove/normalize the unnecessary
tokens. Figure 1 explains the code-mixed dataset pre-processing pipeline. The input for the pipeline is a
tokenized tweet and the output is a cleaned tweet.

Figure 1: Code-Mixed text preprocessing pipeline.

4.2 Classical Supervised Machine Learning Algorithms
To design the finest system for sentiment analysis in code-mixed data, we begin our experiments with
traditional machine learning algorithms like Support Vector Machines (SVM), One-vs-rest classifier with
Logistic Regression (OvRLR), Random Forest Classifier (RFC) and Multilayer Perceptron (MLP). The
input for these methods is a single d dimensional feature vector of a single code-mixed tweet.

5https://github.com/SunilGundapu/SENTIment-Analysis-on-Hindi-English-Code-MIXed-Data



1250

We analyze the results of the above classical algorithms with the combination of two types of vectors.
(i) Word level term frequency-inverse document frequency (tf -idf) vector and (ii) Glove word embeddings.
For all tokens in the code-mixed tweet a feature vector is created by averaging over d dimensional Glove
embeddings and also it is experimented with tf-idf weighted averaging. The code-mixed tweet vector
construction scheme is described below:

featureV ectortweet =

∑N
n=1 tf-idf(tokeni)×Glove(tokeni)

total no. of tokens in tweet (N)

Empirically, we found that standard averaging of Glove and tf-idf gave better results than normal tf-idf
weighted averaging.

4.3 Deep Neural Networks
In this subsection, we describe the character and word embedding based deep neural network called
“Syntactic and Semantic LSTM (SS-LSTM)” that gave better predictions on our corpus. Initially, We
tried with Word2Vec (T. Mikolov et al., 2013), GloVe (J. Pennington et al., 2014), FastText (Bojanowski
et al., 2016), Character embeddings for each word in the input code-mixed tweet. We train a simple
LSTM model using each of these embeddings to test the effectiveness of these embeddings for sentiment
classification. FastText and Character level embeddings gave slightly better results than other embeddings.
By considering these results we modeled the SS-LSTM architecture given below.

4.3.1 Character Level Embeddings
Character level embeddings use a one-dimensional convolutional neural network (1D-CNN) to find the
numeric representation of words by looking at their character-level compositions. 1D-CNN (Yoon Kim,
2014) is an algorithm capable of handling unseen words and also extracting syntactic information from
the segments of input. The character embedding step converts tweet tokens into a d× T matrix. d is the
dimension of vector and T is the number of tokens in code-mixed tweet.

4.3.2 Word Level Embeddings
For word level embeddings we used the Facebook’s FastText. The main advantage of FastText embeddings
is to capture the hidden knowledge about a language, like word analogies or semantic. And it is looking
into the internal structure of words, which could be very useful for morphologically rich languages like
Hindi. The FastText enrich word vectors with subword information.

4.3.3 Model Architecture

Figure 2: System (SS-LSTM) Architecture.



1251

We model the task of SentiMix as a multi-class classification problem where given a code-mixed
tweet, the model outputs probabilities of it belonging to three output classes - Positive, Negative, and
Neutral. The proposed system architecture (SS-LSTM) is shown in Figure 2. The input tweet is fed into
1D-CNN and FastText. These two word embedding models generate two d× T matrices, one is for the
1D-CNN and the other for the FastText. Here the dimension of each matrix is 256× T. These two word
embedding matrices are passed to two LSTM layers. One LSTM layer uses a character level embeddings,
whereas the other layer uses a FastText word embeddings. These two layers learn syntactic and semantic
feature representation and encode sequential patterns in the tweet. And each LSTM layer gives a 128× 1
dimensions vector.

The character embedding LSTM layer output is C ∈ R128×1 and the FastText word embedding LSTM
layer output is W ∈ R128×1. These two output feature representations are row-wise concatenated and the
output vector dimension is O ∈ R256×1. The output vector O passed to a fully connected network with
one hidden layer which models interactions between these features and outputs probabilities per sentiment
class. We used Keras neural network library to implement this model.

5 Results

A summary of results from various techniques on the SentiMix test dataset is present in Table 3. SS-LSTM
gave the best performance on f1-score for each sentiment class as well as on average f1-score. Our results
thus indicate that combining syntactic and semantic representations in SS-LSTM outperforms individual
LSTM-Character and LSTM-FastText embedding models.

Model Representations Precision Recall f1-Score
SVM TF-IDF avg 0.6315 0.6373 0.6308
RFC TF-IDF avg 0.6260 0.6323 0.6261

OvRLR TF-IDF avg 0.6391 0.6426 0.6377
MLP TF-IDF avg 0.6505 0.6433 0.6454
SVM TF-IDF and Glove avg 0.6409 0.6384 0.6412
RFC TF-IDF and Glove avg 0.6311 0.6358 0.6356

OvRLR TF-IDF and Glove avg 0.6357 0.6393 0.6343
MLP TF-IDF and Glove avg 0.6485 0.6523 0.6445

LSTM Word2Vec 0.6565 0.6538 0.6523
LSTM FastText 0.6605 0.6533 0.6554
LSTM Glove 0.6585 0.6523 0.6545
LSTM 1D-CNN 0.6825 0.6610 0.6651
LSTM BERT 0.6800 0.6712 0.6742

SS-LSTM FastText and 1D-CNN 0.6819 0.6773 0.6758

Table 3: Results on test data for Hindi-English.

Machine learning models with tf-idf feature representations gave the approximate baseline results. We
observe that the tf-idf weighted average of GloVe performed better than the simple average of vectors.
And we used the grid search (Srivastava et al., 2014) to find the better hyper-parameters like number of
LSTM layers, learning rate, and the number of epochs. We used GPU for training deep learning models.

6 Conclusion

In this paper, we experimented the code-mixed dataset with various machine learning and deep learning
models. We see that the LSTM models performed far better than traditional ML methods. In the first
phase of the SentiMix competition (development set), we were able to achieve a score of 0.6357. But in
the second phase (test dataset), our best score was only 0.6758. After competition we attain the f1-score
of 0.6789 by changing few parameters like learning rate and number of LSTM’s. Till now we handled
problems like unseen words, spelling variations, dataset imbalance, emojis, short form of words, etc.



1252

In future work, we plan to focus on issues like free ordering of words in sentence constructions, short
sentences with unclear semantic structure, etc. And we would like to explore more deep neural network
architectures that can capture sentiments in code-mixed data.

References
Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy Chakraborty,

Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

Poplack, Shana and Walker, James. 2003. Pieter Muysken, Bilingual speech: a typology of code-
mixing. Cambridge: Cambridge University Press, Pp. xvi+306.. Journal of Linguistics. 39. 678 - 683.
10.1017/S0022226703272297.

E. M. Gold and T. R. Corporation. 1967. Language identification in the limit, Inf. Control, vol 10, no 5,
pp 447–474.

Braj B. Kachru. 1978. Toward Structuring Code-Mixing: An Indian Perspective. International Journal of the
Sociology of Language, 16:27-46.

A. Esuli, F. Sebastiani, and V. G. Moruzzi. 2006. SENTIWORDNET: A Publicly Available Lexical Resource for
Opinion Mining, Proc. Lr, vol 0, pp 417–422.

S. Siersdorfer, S. Chelaru, W. Nejdl, and J. San Pedro. 2011. How useful are your comments?. In Proceedings of
19th International Conference on World Wide Web 2011, vol 15, pp 891–900.

R. Sharma and P. Bhattacharyya. 2014. A sentiment analyzer for hindi using hindi senti lexicon. In Proceedings
of 11th International Conference on Natural Language Processing 2014, p 150.

K. Shalini, H. B. Ganesh, M. A. Kumar and K. P. Soman. 2018. Sentiment Analysis for Code-Mixed Indian Social
Media Text With Distributed Representation. International Conference on Advances in Computing, Communi-
cations and Informatics (ICACCI), Bangalore, pp 1126-1131.

D. S. Nair, J. P. Jayan, E. Sherly. 2015. Sentima-sentiment extraction for malayalam. In Advances in Computing,
Communications and Informatics (ICACCI), 2015 International Conference on. IEEE, pp 2381-2384.

K. Sarkar and S. Chakraborty. 2015. A sentiment analysis system for indian language tweets. In International
Conference on Mining Intelligence and Knowledge Exploration., Springer, pp 694-702.

Madan G. Jhanwar and Arpita Das. 2018. An Ensemble Model for Sentiment Analysis of Hindi-English Code-
Mixed Data, CoRR, vol abs/1806.04450.

A. Joshi, A. Prabhu, M. Shrivastava, V. Varma. 2016. Towards sub-word level compositions for sentiment analysis
of hindi english code mixed text. In Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pp 2482-2491.

Patra, Braja and Das, Dipankar and Das, Amitava. 2018. Sentiment Analysis of Code-Mixed Indian Languages:
An Overview of SAIL Code-Mixed Shared Task @ICON-2017.

Gupta, Umang Chatterjee, Ankush Srikanth, Radhakrishnan Agrawal, Puneet. 2017. Sentiment-and-Semantics-
Based Approach for Emotion Detection in Textual Conversations.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2016. Bag of tricks for efficient text classification. In arXiv
preprint arXiv:1607.01759.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural information processing systems, pp 3111-3119.

J. Pennington, R. Socher, and C. D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP,
vol 14, pp 1532–1543.

A. Joshi, A. Prabhu, M. Shrivastava, V. Varma. 2014. Convolutional Neural Networks for Sentence Classifica-
tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp 1746-1751.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
a simple way to prevent neural networks from overfitting, 15(1):1929–1958.


