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Abstract

Users of social networking services often share their emotions via multi-modal content, usually
images paired with text embedded in them. SemEval-2020 task 8, Memotion Analysis, aims at
automatically recognizing these emotions of so-called internet memes. In this paper, we propose
a simple but effective MODALITY ENSEMBLE that incorporates visual and textual deep-learning
models, which are independently trained, rather than providing a single multi-modal joint net-
work. To this end, we first fine-tune four pre-trained visual models (i.e., Inception-ResNet,
PolyNet, SENet, and PNASNet) and four textual models (i.e., BERT, GPT-2, Transformer-XL,
and XLNet). Then, we fuse their predictions with ensemble methods to effectively capture cross-
modal correlations. The experiments performed on dev-set show that both visual and textual
features aided each other, especially in subtask-C, and consequently, our system ranked 2nd on
subtask-C.

1 Introduction

Recently, internet memes — visual plus textual content on the internet — have been widely spreading
due to the rapid growth of social networks, and thus, recognizing the emotions of memes is required to
analyze social interactions. In SemEval-2020 task 8: Memotion Analysis (Sharma et al., 2020), we aim at
automatically recognizing the various emotions of memes. The task contains three subtasks: subtask-A,
where participants are required to predict the sentiment of a given meme, subtask-B, to predict whether
a given meme represents emotions expressing certain aspects (i.e., humorous, sarcastic, offensive, and
motivational) or not, and subtask-C, to predict a four graded degree (i.e., 0, 1, 2, or 3) to which a meme
represents the emotions of the above aspects.

The challenge to deal with in the above tasks is how we can incorporate both visual and textual im-
pressions. To this end, we propose a simple ensemble of strong pre-trained models of single modality to
capture cross-modal correlations, as shown in Figure 1. To the best of our knowledge, ensembles with
strong pre-trained models from different modalities have hardly been explored because multi-modal sys-
tems such as visual questions and answers (Agrawal et al., 2017) focus mostly on multimodal unified
models. From this perspective, our method would provide a simple but effective approach to dealing
with both visual and textual features at once.

Experimental results show that MODALITY ENSEMBLE works well for subtask-B and subtask-C,
showing the effectiveness of our proposed system. The experiments performed on dev-set also show
that both visual and textual features aid each other, especially in subtask-C, and consequently our system
ranked 2nd on subtask-C.

2 Background

Recent years have seen advances in the automatic recognition of visual plus textual content (Agrawal
et al., 2017; Hudson and Manning, 2019). Agrawal et al. (2017) defined a multi-modal task called Vi-
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Figure 1: Schematic sketch of our method

sual Question Answering (VQA), where paired images and questions (in natural language) are supplied.
Answering the questions requires an understanding of vision and language and a bit of commonsense
knowledge. Given that the questions of the VQA dataset have some bias, Hudson and Manning (2019)
released a new dataset called GQA, which avoids bias by automatically generating a variety of questions
from scene graphs. While these tasks aim rather at understanding the contents of images (ex., the objects,
their colors, their spatial relations, or some implications they have), Sharma et al. (2020) defined a new
task, Memotion Analysis, aiming at automatically recognizing the emotions attached to the contents by
the creator. We tackle this task by leveraging strong single-modal pre-trained models and fusing them to
capture cross-modal correlations.

3 Task Setup

For all the subtasks, the inputs are the same, i.e., pairs of an image and a piece of text (“memes” in short).
The details of each subtask are as follows. Note that all the subtasks are classification problems on for

given memes.

subtask-A is a three-class classification problem where we classify the overall sentiment into three
classes, namely negative, neutral or positive.

subtask-B is a bundle of four binary classification problems. For a given emotion type, namely humor,
offensive, sarcasm or motivational, we predict whether or not a given meme expresses the given
emotion type. Note that a meme can belong to more than two emotions, so this is a multi-label
classification problem.

subtask-C is a bundle of four-class classification problems for each emotion type given in the subtask-
B. We classify the emotion intensity of the meme into four degrees, namely 0 = not, 1 = slight,
2 = normal, and 3 = very.

In subtask-B and subtask-C, we solved single emotion-type classification problems separately, rather
than building unified models for all the emotion types.

4 Model

4.1 Overview

Figure 2 illustrates our proposed MODALITY ENSEMBLE. Given meme images, we train single-modal
models (i.e., either textual or visual) for each single-emotion classification problem. Then, we just
aggregate all scores of the single-modal models as the input of the ensemble models and achieve the final
outputs from the models.
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Figure 2: Overview of MODALITY ENSEMBLE. Given an input image, textual and visual models inde-
pendently predict meme emotions, and the ensemble system fuses the modalities.

PVM type key technique
Inception-ResNet (Szegedy et al., 2016) v2 Inception module
Polynet (Zhang et al., 2016) - Polynet module
SENet (Hu et al., 2018) 154 layer Squeeze-and-Excitation
PNASNet-5 (Liu et al., 2018) large Sequential model-based optimization

Table 1: Four provided pre-trained visual models (PVMs)

4.2 Visual Models

We employ four types of well-known pre-trained visual models (PVMs) and fine-tune them on a given
dataset. A briefly summarized list of PVMs can be found in Table 1. All these models are trained on
the ImageNet dataset (Deng et al., 2009) and categorized as variations of a convolutional neural network
(CNN) (Krizhevsky et al., 2012) with a residual unit (He et al., 2016) that provides shortcut connections
to avoid vanishing gradients, like a recurrent neural network does. Here, we briefly summarize the four
PVMs. Inception-ResNet (Szegedy et al., 2016) is the fusion of an Inception architecture (Szegedy et
al., 2015) that incorporates convolution kernels of multiple sizes to handle the variations in the size of
salient parts of images and the residual architecture. In turn, PolyNet (Zhang et al., 2016) provides
a Polyinception module that is a polynomial combination of Inception architectures. While a residual
unit in ResNet transforms the input representation x into H(x) = x + F (x), where F is a nonlinear
transformation, PolyNet pursues structural diversity for the residual unit with polynomial compositions,
i.e., H(x) = x+F (x)+F (F (x)). SENet (Hu et al., 2018) includes squeeze-and-excitation modules that
calibrate channel-wise feature strengths by modelling correlations between channels. PNASNet-5 (Liu et
al., 2018) employs an architecture optimized by reinforcement learning and evolutionary algorithms. The
core strategy is to employ sequential model-based optimization, where the authors proposed searching
CNN structures in order of increasing complexity, jointly learning a surrogate model (Liu et al., 2018).

Augmentation

In the computer vision field, due to the extremely high dimensional nature of image data, augment-
ing training data is highly required and commonly done. We employ the following procedures for the
augmentation. In the training phase, we use (i) random resizing and cropping, (ii) random horizontal
flipping, and (iii) random rotation. Details on the procedure are given in Section 5.1. In the inference
phase, we use “ten-crop inference” for robust prediction. This is essentially an average ensemble of the
predictions on augmented images; concretely, (i) we take ten variants of images from the original image,
and (ii) we calculate the log-probabilities of the classes by applying the model to all ten images. Hence,
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PTM type key technique
BERT (Devlin et al., 2019) large-uncased Transformer
GPT-2 (Radford et al., 2019) medium Transformer encoder and decoder
Transformer-XL (Dai et al., 2019) wt103 Inter-segment connections
XLNet (Yang et al., 2019) large-cased Permutation architecture

Table 2: Four provided pre-trained textual models (PTMs)

subtask-A subtask-B subtask-C
label sentiment label hum. off. sarc. mot. label hum. off. sarc. mot.

-1 59.6 0 76.3 60.9 77.4 35.2 0 9.2 3.1 5.4 35.2
0 31.7 1 23.7 39.1 22.6 64.8 1 32.0 21.0 22.2 64.8
1 8.7 2 35.1 36.7 49.8 -

3 23.7 39.1 22.6 -
Table 3: Label distributions (%) in dataset. Note that hum. = humor, off. = offensive, sarc. = sarcasm,
and mot. = motivational.

we get ten log-probability distributions. (iii) We average the ten log-probabilities and make predictions
using the averaged log-probabilities. The ten images are made by (i) cropping four smaller images at
their four corners (i.e., top-left/top-bottom/right-bottom/right-top) plus one image at its center and (ii)
also getting the horizontally flipped images of the five cropped images, getting ten images in total.

Fine-Tuning
We fine-tune a PVM by replacing the top fully-connected layer of the PVM, which is used to classify
original ImageNet classes, with a new one to classify the target labels of our task. During the fine-tuning,
we use a single learning rate for all the layers of the model, which is common in the training of image
models.

Loss Functions
We also considered the label imbalance problem. To show the importance of the problem, we show
Table 3 with the number of samples for each class. For example, label “1” in subtask-A is 8.7%, and
“0-off.” in subtask-C is only 3.1%, showing that the numbers of samples belonging to the classes are
highly imbalanced. Therefore, we employ class-wise weighted loss where the weight for each class is
proportional to the inverse of the number of samples belonging to that class.

4.3 Textual Models
We employ four types of pre-trained textual models (PTMs). Brief summarized explanations of each
PTM can be found in Table 2. All these models are based on a Transformer (Vaswani et al., 2017)
language model, which stacks layers of multi-head self-attentions. The differences between PTMs are
as follows. BERT (Devlin et al., 2019) is a bidirectional Transformer trained by masked language
modeling and sentence prediction. Although there are some variant pre-trained models of BERT, we
selected a large model for higher performance. GPT-2 (Radford et al., 2019) employs a Transformer
encoder and decoder trained by left-to-right language modeling. Transformer-XL (Dai et al., 2019)
also contains a Transformer encoder and decoder trained by left-to-right language modeling with inter-
segment connections to capture longer dependencies. XLNet (Yang et al., 2019) is a Transformer-based
model but incorporates training on permutations of gold tokens to incorporate bidirectional contexts
without corrupting the original tokens with mask tokens.

Preprocessing
Text in memes is often in upper-case characters. We normalize the characters by converting them to
lower-case characters. After the conversion, we tokenize the text with PTM-specific tokenizers (see
Section 5.1 for details).
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value
optimizer SGD
momentum 0.95
learning rate scheduling ×0.1 when epoch reaches 40 and 60
learning rate The best one from [1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2]
training epochs 100
batch size 8 to 32 depending on PVM
resized image size given by each PVMs
FFN dim Induced by resized image size and the pre-trained model architecture

Table 4: Hyperparameters of visual models

value
folds (k) 5
batch size 1 to 16 depends on PTM
gradient clipping 5.0
early stopping patience 5
max epochs 30

(a) Fixed hyperparameters

value range
learning rate 1e-6 to 3e-4
optimizer Adam or Adam with warmup
dropout 0.0 to 0.3
BiLSTM layers [1, 2]
BiLSTM dim [256, 512, 1024]
attention dim [256, 512, 1024]
FFN dim [256, 512, 1024]

(b) Optimized hyperparameters

Table 5: Hyperparameters of textual models

Fine-Tuning
We fine-tune four PTMs as mentioned above with some additional task-specific layers for single-emotion
classification tasks.

First, we feed tokenized pieces of text into PTM to get context-specific embeddings. We also apply a
bidirectional LSTM (BiLSTM) (Graves et al., 2013) and dot-product attention to further contextualize
the embeddings. To produce a sentence representation, we apply PTM-specific pooling, which takes the
last embedding for GPT-2 and XLNet, takes the first (i.e., [CLS]) embedding for BERT, or takes a max-
pooling for Transformer-XL. Finally, the embedding is fed into an FFN to predict the class label. We use
the weighted cross-entropy loss, the same as the one shown in Section 4.2.

4.4 Modality Ensemble

Our MODALITY ENSEMBLE fuses outputs of fine-tuned PVMs and PTMs to capture cross-modal cor-
relations. We employ stacked generalization (Wolpert, 1992), one of the ensemble methods, as well as
naive average ensemble methods. Stacked generalization employs a meta-estimator (e.g., a simple linear
model), which aggregates the predictions of base models to make more robust predictions.

Although mostly linear models are utilized, we hypothesized that non-linearity may be essential for
capturing complicated correlations of modality predictions, so we tried several non-linear estimators (ex.,
decision tree and random forest) as well as linear estimators like logistic regression.

5 Experiments

5.1 Implementation

For the implementation of the visual models, we used mainly the Torchvision (https://github.
com/pytorch/vision) and Pillow (https://github.com/python-pillow/Pillow) li-
braries for preprocessing. We used the RandomResizedCrop(), RandomHorizontalFlip(),
TenCrop(), and RandomRotation() functions of the Torchvision library with their default param-
eters for augmenting the images. To fine-tune PVMs, we used the cnn_finetune (https://github.
com/creafz/pytorch-cnn-finetune) library, which in turn utilizes pre-trained models.



1131

subtask-A subtask-B subtask-C
IITK (1) .355 vlad eduardgzaharia UPB (1) .518 guoym (1) .322
guoym (2) .352 guoym (2) .515 Hitachi (2) .319
aihaihara (3) .350 Kraken (3) .510 vlad eduardgzaharia UPB (3) .317
Diptadas (4) .349 upv (4) .509 ripple ai (4) .316
IrinaBejan (5) .348 memebusters (5) .509 IITK (5) .315
Hitachi (15) .341 Hitachi (21) .491

Table 6: Official results of average macro-F performance (and its rank) for top five teams.

subtask-A
subtask-B subtask-C

ave. hum. off. sarc. mot. ave. hum. off. sarc. mot.
ensemble all

(MODALITYENSEMBLE)
.371 .540 .556 .548 .532 .526 .338 .278 .276 .268 .526

PVM

ensemble (vision) .357 .526 .527 .526 .526 .524 .334 .280 .274 .258 .524
PNASNet-5 .331 .514 .526 .515 .507 .508 .324 .279 .252 .247 .508
Inception-ResNet .342 .509 .524 .509 .499 .504 .321 .275 .268 .245 .504
SENet .308 .489 .509 .478 .481 .488 .307 .255 .263 .233 .488
Polynet .329 .498 .505 .498 .488 .503 .317 .263 .247 .245 .503

PTM

ensemble (text) .374 .535 .544 .528 .536 .531 .331 .270 .262 .265 .531
BERT .364 .536 .567 .515 .532 .530 .326 .271 .241 .260 .530
GPT-2 .358 .529 .558 .521 .522 .512 .298 .250 .215 .224 .512
Transformer-XL .346 .523 .539 .521 .528 .504 .304 .260 .231 .213 .504
XLNet .358 .515 .522 .522 .511 .504 .305 .241 .232 .232 .504

Table 7: Modality ablation study on dev-set. Macro-F score of single emotion classification and average
scores (=ave.) are shown. Note that mot. in subtask-B and subtask-C shares same scores since it is binary
classification in both subtasks.

For the implementation of the textual models, we employed Jiant (Pruksachatkun et al., 2020), a
transfer learning framework that incorporates Hugging Face’s transformer library (Wolf et al., 2019) for
PTMs and tokenizers.

Some of the other codes were built with PyTorch (Paszke et al., 2019) and Ignite (https://
github.com/pytorch/ignite). For the meta-estimators, we tried classifiers like logistic regres-
sion, decision tree, and hard/soft-voting and chose the one that performed the best in our preliminary
experiments. The meta-estimators were implemented with scikit-learn (Pedregosa et al., 2011).

5.2 Hyperparameters

For the visual models, we searched hyperparameter space with a relatively small number of fixed values
because the training cost is much higher than that of textual models. The hyperparameter range for the
visual models is shown in Table 4.

For the textual models, we optimized hyperparameters as shown in Table 5b. The hyperparameter
search was conducted by using Optuna (Akiba et al., 2019), an optimization framework, in 30 steps. The
fixed hyperparameter ranges for the textual models are shown in Table 5b. During the hyperparameter
optimization, the performances were measured by 5-fold cross-validation.

5.3 Results

Official Ranking
First, we report the official scores and ranking in Table 6. The table shows that our system was ranked
2nd in subtask-C, showing the effectiveness of our system.
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subtask-A
subtask-B subtask-C

hum. off. sarc. mot. hum. off. sarc. mot.
HV DT RF DT DT HV DT DT SV

Table 8: Best ensemble methods for MODALITY ENSEMBLE. HV, SV, RF, and DT denote hard vote,
soft vote, random forest, and decision tree, respectively.

Analyses of Modality Ensemble
We show an ablation study on the dev-set in Table 7. In the study, we examined the performances of
single PVMs and PTMs, ensemble of models from single modalities [“ensemble (vision)” and “ensemble
(text)”], and ensemble of models from all modalities (MODALITY ENSEMBLE). As can be seen from the
table, in most tasks, MODALITY ENSEMBLE performed better than or was at least comparable to single-
modal ensemble models. These results suggest the effectiveness of MODALITY ENSEMBLE. This would
be because MODALITY ENSEMBLE successfully captures the correlation of cross-modal predictions.

In subtask-A, the text-only ensemble models performed the best among all the ensemble models,
outperforming MODALITY ENSEMBLE and the vision-only ensemble models. In addition to this, single
textual models often performed better than single visual models. This implies the superiority of the
textual model to the visual model for the sentiment classification task.

In subtask-B, MODALITY ENSEMBLE performed the best on average, outperforming the vision-only
or the text-only ensemble models. For single modal models, generally, the textual models outperformed
the visual models. This also implies the superiority of textual modality in binary emotion classification
tasks.

In subtask-C, MODALITY ENSEMBLE performed the best on average, followed by vision-only ensem-
ble models and textual-only ensemble models. The same tendency was seen in the comparison of single
models. This tendency is in contrast to that of subtask-B, implying the superiority of visual modality in
emotion grading tasks.

In terms of PVMs, PNASNet and Inception-ResNet worked well generally, although the two models
are came before SENet and PNASNet. For the PTMs, BERT is likely the best model. However, we
estimate that more hyperparameter optimizations could improve the weaker PVMs and PTMs.

Which Meta-Estimator Is the Best?
Table 8 shows the best meta-estimator for each emotion classification task. In most emotion classification
tasks, the non-linear ensemble methods performed the best. We guess that complicated cross-modal
correlations are better captured by non-linear methods.

6 Conclusion

In this paper, we presented a simple but effective modality ensemble for predicting multi-modal inter-
net meme emotions. For both visual and textual modalities, we fine-tuned strong pre-trained models
independently. In addition, we fused the predictions with an ensemble method to capture cross-modal
correlations. The experiments on the dev-set show the promising results of our strategy. We will explore
a more effective way of handling the multi-modality of an internet meme.
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