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Abstract

This paper describes our participation in SemEval 2020 Task 7 on assessment of humor in edited
news headlines, which includes two subtasks, estimating the humor of micro-editd news headlines
(subtask A) and predicting the more humorous of the two edited headlines (subtask B). To address
these tasks, we propose two systems. The first system adopts a regression-based fine-tuned
single-sequence bidirectional encoder representations from transformers (BERT) model with
easy data augmentation (EDA), called “BERT+EDA”. The second system adopts a hybrid of a
regression-based fine-tuned sequence-pair BERT model and a combined Naive Bayes and support
vector machine (SVM) model estimated on term frequency–inverse document frequency (TFIDF)
features, called “BERT+NB-SVM”. In this case, no additional training datasets were used, and
the BERT+NB-SVM model outperformed BERT+EDA. The official root-mean-square deviation
(RMSE) score for subtask A is 0.57369 and ranks 31st out of 48, whereas the best RMSE of
BERT+NB-SVM is 0.52429, ranking 7th. For subtask B, we simply use a sequence-pair BERT
model, the official accuracy of which is 0.53196 and ranks 25th out of 32.

1 Introduction

Humor, a high-level form of human communication, is omnipresent, including in the social media as well
as real-life situations. The proper use of humor can have a positive impact on our lives. An automatic
identification of humor can help in better understanding the structure and theory of humor. Moreover,
correctly understanding humor is important for improving the performance of many natural language
processing applications such as a sentiment analysis and intention mining.

To evaluate the progress of automatic humor assessment, SemEval-2020 task 71 aims to study how
machines can understand humor generated by applying short edits to news headlines (Hossain et al., 2020).
A dataset, called Humicroedit (Hossain et al., 2019), with a total of 15,095 English edited news headlines
collected from Reddit (reddit.com) along with mean humor scores, was developed. With this dataset,
humor is generated after a short editing, e.g., “President vows to cut taxes hair”. Subtask A focuses on
the prediction of the mean humor of an edited headline, and subtask B involves predicting the funnier of
two edited headlines.

To address this problem, we propose two systems2. The first (BERT+EDA) is a regression fine-tuned
single sequence bidirectional encoder representations from transformers (BERT) model (Devlin et al.,
2019) with easy data augmentation (EDA) tool3, which is an implementation of the data augmentation
theory of Wei and Zou (2019). The second (BERT+NB-SVM) is a hybrid of the regression fine-tuned
sequence-pair BERT and a Naive Bayes-Support Vector Machine (NB-SVM) model (Wang and Manning,
2012) estimated on TFIDF features. Here we combine the strength of deep learning and classical machine
learning. BERT+NB-SVM outperforms BERT+EDA. Both systems are described in the later sections,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1https://competitions.codalab.org/competitions/20970
2Source code for our model is published on https://github.com/HeroadZ/SemEval2020-task7
3https://github.com/jasonwei20/eda nlp
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although the official result for subtask A is only from BERT+EDA. For subtask B, we simply use a
sequence-pair BERT model. The official accuracy is 0.53196, which rankes 25th out of 32.

In the rest of this paper, studies related to automatic humor recognition are introduced in section 2. An
overview of the system is presented in section 3. We then describe the experiments and results in section
4. Finally, we provide some concluding remarks in section 5.

2 Related Work

The task of automatic humor recognition refers to deciding whether a given sentence expresses a certain
degree of humor. However, this remains a challenge (Attardo, 1994) because there is no universal
definition of humor, and an understanding of a same sentence depends on personal background of
the readers. Previous studies on humor recognition have focused on the binary classification problem
(humorous or not). In Taylor (2004), a joke recognizer was developed to determine whether a discovered
wordplay makes the text funny by learning the statistical patterns of text in N-grams. In Yang et al.
(2015), semantic features designed to recognize humor based on four structures are described: incongruity,
ambiguity, interpersonal effect and phonetic style. Moreover, the authors proposed an effective maximal
decrement method to extract humor anchors in the text. In addition to linguistic features, some other
studies have tried to make use of spoken or multimodal signals for improvement. For instance, in
Purandare and Litman (2006), a classical supervised decision tree classifier with a set of acoustic-prosodic
features and linguistic features is used to recognize humor in conversations from a comedy television
show.

Many recent studies have attempted to utilize a neural network for humor detection. In De Oliveira and
Rodrigo (2015), recurrent neural network (RNNs) and convolutional neural networks (CNNs) are applied
to humor detection in a dataset on Yelp reviews. They found that the CNN model outperformed RNN
with two points. In Chen and Soo (2018), a CNN architecture is constructed using highway networks and
applied to a balanced large-scale dataset called “Pun of the Day”, of both English and Chinese texts.

In this paper, we constructed systems based mainly on BERT and NB-SVM models. BERT is pretrained
on unlabeled text (Wikipedia) through joint conditioning on both the left and right contexts in all layers.
We chose BERT becacuse it has obtained state-of-the-art results on 11 natural language processing tasks,
including text classification and regression datasets like GLUE (Wang et al., 2018). In addition we chose
NB-SVM model based on the study in Wang and Manning (2012), which demonstrated that NB achieves
better results for short snippets of sentiment tasks, whereas SVM is better for longer documents. An
SVM model using NB log-count ratios as features performs well across different tasks. BERT focuses
on the semantics, and NB-SVM focuses on linguistics, and this combination performed well at Human
Annotation Challenge at IberLEF 2019 (Ismailov, 2019).

3 System Overview

3.1 BERT + EDA

The structure of BERT + EDA is shown in Figure 1. It is a regression fine-tuned single-sequence BERT
with data augmentation (Wei and Zou, 2019) in simple words. Initially, we use an easy data augmentation
(EDA) tool to create more data for training. EDA performs four operations on a given sentence, i.e.,
synonym replacement, random insertion, random swap, and random deletion. During the second step, we
fine tune the BERT with the augmentation dataset. Here because we apply a single-sequence BERT, we
replace the original word with the edit word. For example, if the original sentence is “President vows to
cut 〈taxes〉” and the edit word is “hair”, the input should be “President vows to cut hair”. If the model
is for sequence-pair training, the input should be a tuple containing “President vows to cut taxes” and

“President vows to cut hair”. We then tokenize the test sentence and predict the result using the fine-tuned
BERT model. Finally, we process the prediction to make it closer to the possible grade. For instance,
we transform 1.333 to 1.4 and 1.233 to 1.2. As the reason for this processing, the mean grade should be
within a limited range.
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3.2 BERT+NB-SVM

The structure of BERT+NB-SVM is shown in Figure 2. As can be seen, the process on the left is for
training and the process on the right is for predicting. In the training step, we fine-tune BERT model with
the training dataset. The SVM model is then trained with NB log count ratios from TFIDF matrix of the
training dataset. During the prediction step, the final score is the weighted sum of the fitted NB-SVM
model and best fine-tuned BERT model. The best fine-tuned BERT model indicates the model that
performs best among all models trained with different epochs and with different batch sizes. The weights
of the best fine-tuned BERT model and NB-SVM model are 0.91 and 0.09, as derived from the grid search.
The same processing made in BERT+EDA is also necessary during the final step.

Figure 1: The structure of BERT+EDA

Figure 2: The structure of BERT+NB-SVM

4 Experiments and Results

4.1 Dataset and Experimental Settings

The statistics of the dataset4 used in this task are shown in Table 1. The headlines used in subtask B are all
from subtask A. Here we combine “train” and “dev” datasets for training. In subtask A, the performance
of systems is evaluated based on root-mean-square deviation(RMSE). In subtask B, the accuracy is used
as the metric.

Task A B

Dataset train dev test train dev test
Number 9652 2419 3024 9381 2355 2960

Table 1: The statistics of the dataset.

4https://www.cs.rochester.edu/u/nhossain/humicroedit.html
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In this work, we apply a pretrained BERT model in a Pytorch implementation using HuggingFace5. We
use only the 12-layer BERT-base-cased model pretrained on cased English text. A large BERT model
is not used because the dataset is not large. For the BERT tokenizer, we set the maximum length of
single-sequence BERT to 96 and sequence-pair BERT to 160 because the longest sentence in the dataset
has 74 tokens after tokenization. For the hyperparameters of SVM model, C is 1.0 and epsilon is 0.3,
which are the default settings of SVR model. We trained all models except NB-SVM model with different
epochs and batch sizes. The epoch ranges from 1 to 4, and the batch size is set to {32, 16, 8, 4}. For the
EDA tool, the number of augmentation for each sentence is 4 and the change in percentage (alpha) is
0.05 by default. The random seed is 66. In the next subsection, we introduce the performance evaluation
of our systems for each task, and the results of which are all reproducible from our code. Note that the
maximum length for the BERT tokenizer of the official results are 300, whereas in the post-evaluation
stage we decrease it to 96 and 160 for less memory usage and an improved performance. Because the
parameters used in the official results differ slightly from the above parameters, and thus the following
results are also different.

4.2 Performance Evaluation for Subtask A

The RMSE scores of the sequence-pair BERT model are shown in Table 2. Here, E and BS represent
the epoch and batch size respectively. As shown in this table, the RMSE score of best model is 0.52642
which is trained in e = 1 and bs = 4. With an increase in the number of epochs, the RMSE score does
not decrease, whereas with a decrease in the batch size, the RMSE score decreases. Therefore, we can
observe that the batch size has a great impact on the results. Moreover, the data appear to be insufficient
because overfitting occurs after two epochs.

E\BS bs=32 bs=16 bs=8 bs=4

e=1 0.56554 0.53797 0.53862 0.52642
e=2 0.54039 0.53015 0.54117 0.53173
e=3 0.54451 0.55280 0.54662 0.55499
e=4 0.58413 0.56029 0.56518 0.56136

Table 2: The RMSE scores of sequence-pair
BERT for subtask A.

E\BS bs=32 bs=16 bs=8 bs=4

e=1 0.54199 0.54312 0.53396 0.53438
e=2 0.53324 0.54381 0.53830 0.54047
e=3 0.54728 0.54737 0.56014 0.55393
e=4 0.55964 0.55747 0.56742 0.56569

Table 3: The RMSE scores of single sequence BERT
for subtask A.

The RMSE scores of single-sequence BERT are shown in Table 3. The RMSE score of the best model,
which is trained with e = 2 and bs = 32, is 0.53324. It performs worse than sequence-pair BERT. The
reason for which might be because the sequence-pair BERT learned the information of contrast in context.
For example, we input both “hair” and “taxes” into the sequence-pair BERT, whereas for single-sequence
BERT we only input “hair”. During the annotation stage, we assumed the edited headlines creating a
large contrast obtains higher humor score. In addition, the overfitting still occurs during the training step.

Therefore, we introduced EDA to solve the overfitting problem. The combination of single-sequence
BERT and EDA called “BERT+EDA”. The EDA generates four short modified versions for each sentence.
The RMSE scores of BERT+EDA are shown in Table 4. The RMSE score of the best model, which is
trained in e = 1 and bs = 16, is 0.56248. The results show that the EDA is not completely helpful for
datasets with more than 10,000 samples. Unfortunately, we submitted the output of BERT+EDA as last
submission since we thought the evaluation will take the best result rather than the last submission.

The RMSE score of NB-SVM model is 0.56439. Because the best sequence-pair BERT model described
above is trained using e = 1 and bs = 4, we combined it with the NB-SVM model (BERT+NB-SVM).
The RMSE score of the BERT+NB-SVM is 0.52429 based on the weights described in Section 3.2. The
results of all systems are presented in Table 5. All systems outperform the baseline. The best score is
0.52429 from BERT+NB-SVM, which combines the strength of BERT and NB-SVM.

5https://huggingface.co/transformers/pretrained models.html
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E\BS bs=32 bs=16 bs=8 bs=4

e=1 0.57417 0.56248 0.57541 0.56803
e=2 0.57102 0.57212 0.57898 0.56313
e=3 0.57138 0.57297 0.57026 0.57035
e=4 0.58044 0.56966 0.56339 0.56325

Table 4: RMSE scores of BERT+EDA for sub-
task A.

System RMSE score

baseline 0.57471
NB-SVM 0.56439

single BERT + aug 0.56248
single BERT 0.53324
pair BERT 0.52642

BERT + NBSVM 0.52429

Table 5: RMSE scores of all systems for sub-
task A.

4.3 Performance Evaluation for Subtask B
In subtask B, we adopt two strategies to handle the classification problem. The first is utilizing the
systems used in subtask A to predict two humor scores and compare them. The second is formulating a
sequence-pair BERT classifier.

The inputs of the sequence-pair BERT classifier are the edited headlines without original words.
For example, one is “#WomensMarch against Donald Trump around the worldkitchen” and the other

“#WomensMarch against Donald Trumpmen around the world”. The accuracy scores of the sequence-pair
BERT classifier (second strategy) are shown in Table 6. The accuracy of the best model, which is trained
using e = 4 and bs = 8, is 0.53311.

E\BS bs=32 bs=16 bs=8 bs=4

e=1 0.43108 0.45338 0.45473 0.48750
e=2 0.45203 0.45169 0.52466 0.43986
e=3 0.44595 0.47534 0.46047 0.51655
e=4 0.46250 0.51385 0.53311 0.48480

Table 6: Accuracy scores of sequence-pair
BERT classifier for subtask B.

System Accuracy

baseline 0.43547
BERT + NBSVM 0.46926

NB-SVM 0.48209
single BERT + aug 0.49696

single regress BERT 0.51149
pair regress BERT 0.53007

pair BERT clf 0.53311

Table 7: Accuracy scores of all systems for
subtask B.

An overview of the results for subtask B is shown in Table 7. The systems that perform well on subtask
A do not achieve a high accuracy. BERT+NB-SVM achieved the lowest score of 0.46926, which is lower
than the NB-SVM model (0.48209). Although the accuracy of both regression BERT models is above
0.5, despite the best accuracy from sequence-pair BERT classifier (0.53311) outperforming the baseline
by 10%, the model still obtained a low rank among the other submissions. We analyzed the accuracy of
this model for each class, i.e., 0% for class 0, 61% for class 1 and 59% for class 2. This shows that our
systems struggle with recognizing the same humorous sentences.

5 Conclusion

In this study, we developed and compared systems constructed using BERT and NB-SVM models to
deal with the humor assessment in newly edited headlines at SemEval 2020 Task 7. The combination
of the sequence-pair regression BERT model and the NB-SVM model performed well for subtask A.
However, the EDA tool was not completely successful in improving the outcome. Moreover, our solutions
struggle with the comparison of two sentences with same humor score. The official RMSE for subtask A
is 0.57369 and ranked 31st out of 48 whereas the best RMSE of our submission is 0.52429, which ranks
7th. The official accuracy for subtask B is 0.53196, which ranks 25t out of 32. In future studies, we aim to
focus on the using of a large BERT model and the development of other useful data augmentation tools.
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