
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1013–1018
Barcelona, Spain (Online), December 12, 2020.

1013

funny3 at SemEval-2020 Task 7: Humor Detection of Edited Headlines
with LSTM and TFIDF Neural Network System

Xuefeng Luo, Kuan Tang
Linguistics Department, University of Tuebingen, Germany

firstname.lastname@student.uni-tuebingen.de

Abstract

This paper presents a neural network system where we participate in the first task of SemEval-2020
shared task 7 “Assessing the Funniness of Edited News Headlines”. Our target is to create a
neural network model that predicts the funniness of edited headlines. We build our model using a
combination of LSTM and TF-IDF, then a feed-forward neural network. The system manages to
slightly improve RSME scores regarding our mean score baseline.1

1 Introduction

How the computer recognizes, generates, and analyzes humor is an interesting but meaningful challenge
for artificial intelligence (AI). Not only creativity and sophistication of language are needed for the sense
of humor, but also world knowledge, empathy, and cognitive mechanisms which are not so easy for
technologists to model theoretically.

Several stable and capacity large enough datasets have been built for training models in computational
humor studies. These datasets may contain different contexts. Mihalcea Strapparava (2006) set up funny
one-liners which contain more than 24,000 onliner jokes. Filatova (2012) collects regular and sarcastic
Amazon product reviews to identify sarcasm on a sentence level or for a specific phrase. Khodak et
al. (2017) introduce the Self-Annotated Reddit Corpus (SARC) which is a corpus that has 1.3 million
sarcastic statements for training and evaluating systems for sarcasm detection. Hossain et al. (2017) set
up Mad Libs, which is a popular fill-in-the-blank game judged by the human. And then, Hossain et al.
(2019) introduce a novel dataset Humicroedit that contains original media news headlines from an online
posted website Reddit and enables several humor tasks for humor understanding, predicting, generating,
recommending and ranking. The latest one is FunLines, which is a competitive game that not only allows
players to edit news headlines but also rate the funniness of headlines edited by others. Each dataset has
its unique purpose, but how to understand headlines and what makes a few words in one headline so funny
are becoming new problems for AI.

In this paper, we want to test how machines understand humor generated by such short edits rely on
Humicroedit to predict the mean funniness of edited headlines.

2 Related work

How to generate humor is not as easy as we think, especially for computers. Binsted et al. (1997)
developed a formal model producing riddles and implemented it in jape, a computer program which
generates simple punning riddles and confirmed that jape’s output texts are indeed jokes after evaluating
the program by 120 children. Stock and Strapparava (2002) established HAHAcronym to realize the irony
reanalysis and generation of acronyms in a concentrated but unrestricted context. Petrovic and Matthews
(2013) rely on large quantities of unlabeled data to deal with generating a fixed syntactic structure – [I like
my X] like [I like my Y], Z – where X and Y are nouns and Z describes X and Y, and develop an algorithm
called Libitum that helps humans generate humor in a Mad Lib, which is a popular fill-in-the-blank game.
The algorithm is based on a machine-learned classifier that determines whether a potential fill-in word is

1This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1014

funny in the context of the Mad Lib story. Hossain et al. (2020b) use an online game for players to change
a single word or entity in a regular headline from a news source and edit regular news headlines and that
makes the humor generation process highly constrained.

As for humor detection, Reddit and Davidov et al. (2010) utilize the Semi-supervised Sarcasm
Identification Algorithm (SASI), which is the first robust algorithm for recognition of sarcasm, to test two
different database: 5.9 million tweets from Twitter and 66,000 product reviews from Amazon. Reyes et
al. (2012) also use 50,000 texts retrieved from Twitter to evaluate the representativeness and relevance
of the humor and irony. Barbieri and Saggion (2014) approach the detection of irony and humor as a
classification problem applying supervised machine learning methods to the Twitter corpus. Besides
Twitter, Kiddon and Brun (2011) apply methods from metaphor identification to “that’s what she said”
(TWSS) recognition. Khodak et al. (2017) use the Self-Annotated Reddit Corpus (SARC), a 1.3 million
sarcastic statement corpus, to detect sarcasm.

The analysis of humor can be divided roughly into two different levels: word-level and text-level (or
more specifically, sentence-level). In word-level, Engelthaler and Hills (2018) collect 4,997 words to rate
humor norms by analyzing several factors that influence the judgments. Based on that, Westbury and
Hollis (2019) analyzing the semantic, phonological, orthographic, and frequency of words to predict the
original humor rating standard and the score of previously unsettled words. Their reliability is higher
than the half reliability in the original standard, which is estimated by segmentation based on gender
or age line. While in sentence-level, Shahaf et al. (2015) set up a dataset that contains crowd-sourced
captions that are judged by people from the New Yorker. Then they formulate a pairwise comparison
task by giving a cartoon and two captions based on the data to let the computer determine which one
is funnier. They also analyze different variations of the same one-joke and figure out factors affecting
the level of perceived humor. Both West and Horvitz (2019) and Hossain et al. (2019) use headlines to
analysis what makes headlines funny, but West and Horvitz’s work focus on pairs of headlines which is
aligned to similar but serious looking, while Hossain et al. (2019) employed editors to create headlines
first and then used Web-based game to produce and analyze the modified headlines. And in the latest
work, Hossain et al. (2020b) provide instant rating feedback to players when they rate a headline in a
humor competition, and that makes the game fair and engaging.

Let us summarize this section. The computational linguistics studies of humor on generation, detection,
and analysis are not parallel development, these research directions are related to each other, and we need
to develop new algorithms to complete more refined tasks based on the new database.

3 Task Descriptions

This task is based on the publication of Hossain et al. (2019). It studies the humorous of edited headlines
and releases its dataset called Humicroedit (Hossain et al., 2019). The task (Hossain et al., 2020a) asks
us to predict the funniness of an edited headline, given its original headline and edited headline. Each
headline is allowed to only change one word or one named entity. Table 1 gives an example of those
original and edited headlines and its funniness scores. The scores are judged by 5 human judges, and the
average of judge scores is taken as final funniness score. Each score provided by a single judge is from
0-3, where 0 represents Not Funny while 3 as Funny. The task evaluates the predictions by measuring the
Root Mean Square Error (RMSE) of the entire test set. The baseline system takes the mean of true scores.

Original Headlines Edited Word Funniness Scores
Fox’s James Murdoch rebukes Trump over Charlottesville grits 0.2
Trump border wall : Texans receiving letters about their land barbecue 2.2
Former presidents raise $ 31 million for hurricane relief fund president 1.4
Royal wedding : Meghan ’s dress in detail elbow 2.0
Can Democrat Doug Jones pull off an upset in Alabama ? bed 2.0
Trump Budget Gambles on Having This Equation Right Bet 0.8

Table 1: Examples of original and edited headlines (edited word in bold text) and their funniness scores

1015

4 System Overview

We present a two-component neural network system. The first component is a combination of multiple
features, included a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) neural network, a TF-IDF
(Salton and McGill, 1986) representation and the difference between original headline target words and
edited words (subtraction of two vectors). Beyond our LSTM and subtraction, we choose a FastText
(Mikolov et al., 2018) model to embed our headlines and words. All features are concatenated together
and fed to the second component. The second component is a two-layer feed-forward neural network.
Figure 1 shows an overview of our system.

Concatenated

LSTM TF-IDF Subtraction

Figure 1: An overview of the model: first concatenate LSTM, TF-IDF and subtraction of original and
edited words, then feed it to feed-forward neural network

4.1 Embeddings
Fasttext (Mikolov et al., 2018) is a fast and efficient word-to-vector model. It can be trained with any text
corpora and produce vectors for any given words or symbols, even for unseen words, because fasttext not
only takes advantage of words but the character level n-grams as well. Skip-gram model is used, in our
case, in fasttext training. It takes the target words to produce their contexts.

4.2 LSTM
After we retrieved word embeddings from Fasttext, we feed them into a LSTM (Hochreiter and Schmid-
huber, 1997) model. LSTM is a recurrent neural network that is good at processing sequences, like
texts. This type of neural network maintains two types of weights: a hidden state and a cell state. For
each timeslice, it takes the previous hidden state, previous cell state, and current input (word vector
representation). Then, it calculates and feeds the current cell state and current hidden state to the next
timeslice. In the end, we can either take the final cell state or take each timeslice cell state and concatenate
them together. We conduct a study and find out that taking each timeslice cell state works better. Also,
bidirectional recurrent neural networks are good at maintaining information from both directions. We also
choose a bidirectional recurrent neural network to keep tracking both direction timeslice information.

4.3 TF-IDF
TF-IDF (Salton and McGill, 1986) reflects the importance of a single word in the corpus. It takes the
term frequency (TF) times the inverse document frequency (IDF) so that it reduces the effects of words

1016

that occur more frequently in the entire corpora. This helps adjust the words which are more frequent in
general. We use the TF-IDF of each headline in word level, and take them as our second feature.

4.4 Subtraction
Since we want to compare two headlines, we subtract original and edited word vectors where we embed it
from Fasttext (Mikolov et al., 2018) to maintain their differences. Since this task allows to modify named
entities that may contain multiple words, which may lead to different word length. In these cases, we
obtain word vectors from fasttext (Mikolov et al., 2018) for each word, then take the average of all word
vectors as combined word vectors.

4.5 Feed-forward Neural Network
After we get the above feature vectors. we feed this into a two-layer feed-forward neural network with
single neural output where the upper layer doubles the size of the lower layer. The numeric output value
directly becomes our final prediction.

5 Dataset and Experimental Setup

5.1 Dataset
We mainly use Humicroedit dataset (Hossain et al., 2019) to train, evaluate, and test our model. Humi-
croedit collects original headlines from Reddit (reddit.com) and then editing headlines and judging
those headlines using Amazon Mechanical Turk (mturk.com). Each of the headlines has 3 edited
versions, resulting in over 15000 entries of editing (over 5000 original headlines). Data is randomly split
into three subsets: training set (64%), development set (16%), and test set (20%). We use additionally
FunLines (Hossain et al., 2020b) dataset to train our model as well. FunLines has a similar format to
Humicroedit. It allows online users to both edit and judging those headlines.

5.2 Experimental Setup
In our case, we train our embedding model with ABC (Australian Broadcasting Corp.) news head-
lines (https://www.kaggle.com/therohk/million-headlines). This corpus contains
published news headlines over seventeen years. After training our embedding model, we vectorize our
headlines, original target word, and edited word along with all punctuations and symbols. We set this
model with 300 dimension vector, 3-6 character level n-gram, 5 negatives sampled. Here, we use special
characters (“|||”) to hold the place where the words are edited. Named entities are concatenated together
using underscore (“ ”), to maintain the same length of edit and original headlines. The LSTM (Hochreiter
and Schmidhuber, 1997) layer has 128 cells and the activation function is set to tanh. The feed-forward
neural network has 64 and 32 cells and the activation function is set to sigmoid. In order to prevent
over-fitting, we apply 0.5 dropouts between the first component and the second component, while we
apply 0.2 dropouts between two feed-forward neural network layers.

6 Results

We achieve a score of 0.57237 RMSE in the competition and rank 30th place. Then we later modify our
system and further improve the result to 0.56786 RMSE score. Even though we do not reach a higher
position, but we conduct several ablation studies to understand which subsystem contributes most.

6.1 Ablation Study
We conduct 3 pair subsystem studies to discover which sub-parts do best (Table 2 shows the results of
all subsystems, where concatenation of all three features achieve the best score). The first pair systems
are LSTM (Hochreiter and Schmidhuber, 1997) representation whether to use only the final cell state or
concatenate all timeslice cell states. Result shows that the concatenated cell state system improves slightly.
Then, we compare the LSTM system and the TF-IDF (Salton and McGill, 1986) system with and without
subtraction of the original and edited words. TF-IDF with subtraction showed better results. Finally, we
add all features together where it further improves slightly to achieve the best scores.

1017

Ablation Subsystem RMSE
Baseline 0.57469
LSTM with final cell state 0.59105
LSTM with all timeslice hidden state 0.58611
LSTM without subtraction 0.58611
LSTM with subtraction 0.58361
TF-IDF without subtraction 0.58990
TF-IDF with subtraction 0.58619
Competition System 0.57237
Modified all-together System 0.56786

Table 2: RMSE of all ablation systems

6.2 Errors Analysis

Figure 2 indicates the confusion matrix of our system prediction values and the true values. As the figure
indicates, our system predicts mostly from 0.34 to 1.47 while the true values are variously from 0 to 2.6.
This shows that our system predicts less spread and hardly learns from small differences within the range
of 0 to 2.6.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

True Values

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

P
re

di
ct

io
n

V
al

ue
s

Confusion Matrix

0

20

40

60

80

100

120

140

160

Figure 2: Confusion matrix of errors analysis

7 Conclusion

In this shared task, we present a neural network system combined with LSTM and TF-IDF where it
slightly improves RMSE compared to our baselines. Though our system only ranks 30th place of the
competition, we still construct a neural network system that predicts funniness score roughly and we study
the contributions of our subsystems where we find that the combination of LSTM, TF-IDF and subtraction
slightly improved the predictions.

References

Kim Binsted, Helen Pain, and Graeme D Ritchie. 1997. Children’s evaluation of computer-generated punning
riddles. Pragmatics & Cognition, 5(2):305–354.

1018

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010. Semi-supervised recognition of sarcastic sentences in
twitter and amazon. In Proceedings of the fourteenth conference on computational natural language learning,
pages 107–116. Association for Computational Linguistics.

Tomas Engelthaler and Thomas T Hills. 2018. Humor norms for 4,997 english words. Behavior research methods,
50(3):1116–1124.

Elena Filatova. 2012. Irony and sarcasm: Corpus generation and analysis using crowdsourcing. In Lrec, pages
392–398. Citeseer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Nabil Hossain, John Krumm, Lucy Vanderwende, Eric Horvitz, and Henry Kautz. 2017. Filling the blanks (hint:
plural noun) for mad libs humor. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 638–647.

Nabil Hossain, John Krumm, and Michael Gamon. 2019. ” president vows to cut¡ taxes¿ hair”: Dataset and
analysis of creative text editing for humorous headlines. arXiv preprint arXiv:1906.00274.

Nabil Hossain, John Krumm, Michael Gamon, and Henry Kautz. 2020a. Semeval-2020 Task 7: Assessing humor
in edited news headlines. In Proceedings of International Workshop on Semantic Evaluation (SemEval-2020),
Barcelona, Spain.

Nabil Hossain, John Krumm, Tanvir Sajed, and Henry Kautz. 2020b. Stimulating creativity with funlines: A case
study of humor generation in headlines. arXiv preprint arXiv:2002.02031.

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. 2017. A large self-annotated corpus for sarcasm. arXiv
preprint arXiv:1704.05579.

Chloe Kiddon and Yuriy Brun. 2011. That’s what she said: double entendre identification. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short
papers-Volume 2, pages 89–94. Association for Computational Linguistics.

Rada Mihalcea and Carlo Strapparava. 2006. Learning to laugh (automatically): Computational models for humor
recognition. Computational Intelligence, 22(2):126–142.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. 2018. Advances in
pre-training distributed word representations. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018).

Saša Petrović and David Matthews. 2013. Unsupervised joke generation from big data. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 228–232.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi. 2012. From humor recognition to irony detection: The
figurative language of social media. Data & Knowledge Engineering, 74:1–12.

Gerard Salton and Michael J McGill. 1986. Introduction to modern information retrieval.

Dafna Shahaf, Eric Horvitz, and Robert Mankoff. 2015. Inside jokes: Identifying humorous cartoon captions. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1065–1074.

Oliviero Stock and Carlo Strapparava. 2002. Hahacronym: Humorous agents for humorous acronyms. Stock,
Oliviero, Carlo Strapparava, and Anton Nijholt. Eds, pages 125–135.

Robert West and Eric Horvitz. 2019. Reverse-engineering satire, or “paper on computational humor accepted
despite making serious advances”. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 7265–7272.

Chris Westbury and Geoff Hollis. 2019. Wriggly, squiffy, lummox, and boobs: What makes some words funny?
Journal of Experimental Psychology: General, 148(1):97.

