MSR India at SemEval-2020 Task 9: Multilingual Models can do
Code-Mixing too

Anirudh Srinivasan
Microsoft Research, India
t—ansrin@microsoft.com*

Abstract

In this paper, we present our system for the SemEval 2020 task on code-mixed sentiment analysis.
Our system makes use of large transformer based multilingual embeddings like mBERT. Recent
work has shown that these models posses the ability to solve code-mixed tasks in addition to their
originally demonstrated cross-lingual abilities. We evaluate the stock versions of these models
for the sentiment analysis task and also show that their performance can be improved by using
unlabelled code-mixed data. Our submission (username Genius1237) achieved the second rank
on the English-Hindi subtask with an F1 score of 0. 726.

1 Introduction

The task of identifying sentiment from text is extremely important in this age where large volumes of text
content are being consumed via social media. The task becomes even more interesting when it comes to
bilingual communities as these communities exhibit the phenomenon of code-mixing online (Rijhwani et
al., 2017).

Existing approaches to tackling this problem have mainly been based on statistical methods (Vilares et
al., 2016; Patra et al., 2018]). These methods have used features like n-gram counts and TF-IDF vectors
along with a linear classifier. There have been very few approaches to this problem using deep learning
as the amount of labelled code-mixed data available has always been very less. Methods like the one in
Pratapa et al. (2018b)) train word embeddings using unlabelled code-mixed data, the availability of which
is not as problematic as labelled data, and use these embeddings along with a recurrent neural network
based model.

Recent advancements in natural language processing have shown that large transformer based models
like BERT (Devlin et al., 2019), when pre-trained on large corpora, are easily adaptable for downstream
tasks with small datasets. These models even perform well in a cross-lingual manner (Conneau et al., 2018)
when pre-trained on corpora spanning multiple languages. Our experiments show that these multilingual
models perform well even on code-mixing tasks, having had no exposure to any code-mixing during
pre-training. We use such a system to solve the code-mixed sentiment analysis problem. We also show
that it’s performance can be improved by using a combination of generated and real code-mixed text.

The rest of the paper is organized as follows. Section [2]tasks about the dataset for the task and the
pre-processing done to it. Section [3| talks about the different systems we evaluated, with Section
in particular going into how we improved the multilingual models using code-mixed data. Section [4]
describes the performance of the different models and Section [5|concludes our discussion.

2 Dataset and Preprocessing

The details about the datasets (Patwa et al., 2020)) for both the English-Hindi (En-Hi) and English-Spanish
(En-Es) tasks are described in Table |1} The datasets comprise entirely of tweets. The English-Hindi

Author can be contacted at anirudhsriniv @ gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

951

Proceedings of the 14th International Workshop on Semantic Evaluation, pages 951-956
Barcelona, Spain (Online), December 12, 2020.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

0.7

0.2 Classification
0.1 Scores
Classification
Head
0.02
0.01
) Sentence
. Embedding
Language Train Dev Test 0.2
En-Es 12002 2998 3789 T
En-Hi 14000 3000 3000
Multilingual Embedding
Table 1: Dataset details T
Feature mBERT XLM-R C] C] C] Tokens
Tokenization WordPiece ~ SPM T
Languages 104 100 '
Vocab 30k 250k Tokenizer
Num. Layers 12 12 A
Params 110M 270M
Input Sentence

Table 2: Model Differences

Figure 1: Model

dataset consists of tweets where the Hindi is written in the Roman script. We make use of the language
identification tool by |Gella et al. (2014) to identify the Romanized Hindi sections and transliterate them to
Devanagari using the Bing Translator API The language tags provided along with the data is not used.
No other pre-processing is done to the data.

3 System Description

Figure [I] describes the model used for sentiment analysis. The model is a classification model that
comprises of a pretrained transformer-based multilingual embedding (like BERT) and a linear layer acting
as a classification head. The embedding takes in a tokenized sentence and outputs a single embedding
for that sentence. This embedding is then run through the linear layer that outputs scores for each of the
3 classes. The entire system was implemented using the Huggingface Transformers library (Wolf et al..
2019). We experimented with different models for the embedding. We also experimented with different
pooling techniques that are used to obtain the sentence embedding and these are detailed below. Finally,
as a baseline, we report the results from the method in |Pratapa et al. (2018b), using Word2vec embeddings
trained on code-mixed data along with a BILSTM.

'https://aka.ms/translatordevdoc

952

https://aka.ms/translatordevdoc

3.1 Multilingual Embeddings

Multilingual BERT (mBERT) (Devlin et al., 2019)) is a transformer based model that is pre-trained on a
corpora comprising 104 languages. This performs well on cross-lingual tasks like XNLI and this was
taken as our baseline model. A more recent model is XLLM-Roberta (XLM-R) (Conneau et al., 2019) and
this has been shown to outperform BERT on many cross-lingual tasks. This differs from BERT in the type
of tokenization it uses and the amount of data it is pre-trained on. Table |2 contains a list of differences
between the two models. We use the bert-base-multilingual-cased model for BERT and the
x1lm-roberta-base model for XLM-R.

3.2 Sentence Embedding Technique

The aforementioned multilingual models output one embedding per input token. These need to be
pooled together to obtain a sentence embedding to use for the sequence classification task. There
have been multiple works proposing different methods to obtain a sentence embedding from BERT
(Reimers and Gurevych, 2019; Wang and Kuo, 2020). The two most popular (and simplest) methods are
performing average pooling over the embeddings of every token or using the embedding of the first token
([CLS] token in case of BERT, <s> in case of XLM-R). We evaluate both these methods and report the
performance of both.

3.3 Finetuning Multilingual Embeddings on Code-Mixed Data

There have been multiple works proposing techniques to create domain specific versions of models like
BERT (Sun et al., 2019; [Lee et al., 2019; |Alsentzer et al., 2019). Khanuja et al. (2020) showed that when
models like mBERT are finetuned on synthetic and non-synthetic code-mixed data, they perform much
better on downstream code-mixed tasks. Along these lines, we finetune both mBERT and XLM-R with
code-mixed data on the masked language modeling task. We follow a 2 stage curriculum, first finetuning
on a large corpus of 2 million generated (synthetic) code-mixed sentences and then with a smaller corpus
of 90,000 real (non-synthetic) code-mixed sentences. The curriculum followed and synthetic sentences
generated are based on the technique in [Pratapa et al. (2018a). We create one model each for En-Es
and En-Hi, finetuned on code-mixed data from that pair. We call these Modified mBERT and Modified
XLM-R.

4 Results and Analysis

The results are presented in Tables [3]and] Each table contains F1 scores averaged over 5 different seeds.
For all the runs, a batch size of 64 was used along with the Adam optimizer with a learning rate of Se-5.
Each batch was made to have equal number of samples from all 3 classes. Training was performed for 10
epochs. Right away, we are able to observe that the stock versions of mBERT and XLM-R, which are not
exposed to any form of code-mixing during their pre-training show impressive F1 scores. This is talked
about more in Section[4.2] We present an analysis of the sentence embedding techniques first.

4.1 Sentence Embedding Methods

Both the sentence embedding methods experimented with are shown as separate columns in Tables [3]
and] Using average pooling does bring in improvements in some cases, mainly on the Dev sets, but the
corresponding Test set numbers are not better.

The embedding of the first token ([CLS]/<s>) in the final layer is computed as a weighted sum over
the embeddings of the all the tokens of the n — 15! layer. Given such a mechanism, the embedding of
the first token may be able to capture enough information over all the tokens of the sentence and is able
to perform as well as the average pooling method for a simple sequence classification task. Our results
are in line with the results inWang and Kuo (2020), where most simple downstream tasks do not see big
differences in performances of the 2 embedding methods, with only more complex sentence similarity or
probing tasks showing the average pooling method to perform better.

953

Model/Sent. Embedding First Token Avg. Pooling
Dev Test Dev Test

Word2vec + BiLSTM 67.83 59.73 - -
Stock mBERT 72.29 65.80 81.38 66.21
Modified mBERT 78.49 67.32 7931 66.60
Stock XLM-R 69.62 7040 73.79 69.69
Modified XLM-R 72774 70.03 72.58 69.50

Table 3: F1 scores on En-Hi Dataset

Model/Sent. Embedding First Token Avg. Pooling
Dev Test Dev Test

Word2vec + BiLSTM 54.50 - - -
Stock mBERT 60.06 - 60.31 -
Modified mBERT 60.66 63.73 61.94 -
Stock XLM-R 5745 68.44 61.23 -
Modified XLM-R 62.00 - 56.84 -

Table 4: F1 scores on En-Es Dataseﬂ

“Since test labels were not available, we only have numbers from the models that were submitted to the online contest

4.2 Finetuning on Code-Mixed Data

Both mBERT and XLLM-R performing well on these tasks is pretty impressive. Finetuninﬁ these models
with code-mixed data improves the performance of the stock models. We observe an improvement in
almost all the cases, ranging from 1-5%. Our results resonate with the ones in [Khanuja et al. (2020),
suggesting that most code-mixed tasks can be solved by simply using multilingual embeddings like
mBERT, finetuning them on any available code-mixed data if better performance is needed.

4.3 Class-Wise Performance Analysis

We take the best performing model (on the test set this is Stock XLM-R) for both tasks and analyse the
class-wise precision, recall and F1-scores. These are depicted in Tables[5|and [6] Given that training was
with data balanced across the 3 classes, similar performance across them is expected. This is observed in
the En-Hi task, with all 3 classes having precision and recall within a small range. Similar numbers are
observed between the dev and test sets too. However when it comes to the En-Es test set, there is a big
gap between the classes. The precision values for the neutral class is extremely low and this is affecting
the overall F1 scores. Interestingly, this gap in scores isn’t present on the dev set, suggesting that there is
some aspect of the test set that the model is unable to learn from the train set during the training process.

5 Conclusion

In this paper, we present our system for the SemEval 2020 task on code-mixed sentiment analysis. We
make use of multilingual models like mBERT and show that they work well for code-mixing tasks. The
best performance is extracted from these models by finetuning them on code-mixed data and using this
version instead of their stock versions. We also find that for simple sequence classification tasks, the
choice of sentence embedding technique does not have a significant impact on the result.

There are multiple paths for further exploration of this work. While finetuning mBERT on code-mixed
data, we’ve created one model per language and used a relatively small amount of data (compared to
the amount of data BERT is pretrained on). Both these could be looked into, creating a single model for

2MLM finetuning

954

Class/Measure Precision Recall F1 Class/Measure Precision Recall F1

Dev Dev

Positive 0.72 0.78 0.75 Positive 0.67 0.61 0.64

Neutral 0.62 0.61 0.62 Neutral 0.46 0.40 043

Negative 0.71 0.65 0.68 Negative 0.43 0.66 0.52

Test Test

Positive 0.76 0.79 0.78 Positive 0.92 0.64 0.76

Neutral 0.62 0.66 0.64 Neutral 0.09 0.61 0.16

Negative 0.76 0.66 0.70 Negative 0.53 0.35 042
Table 5: En-Hi Task: Class-wise performance Table 6: En-Es Task: Class-wise performance
with Stock XLM-R with Stock XLM-R

multiple language pairs, and using much more data for this purpose. In this process, one may be able
to obtain a universal model that works for a large number of code-mixed pairs in addition to the large
number of languages that mBERT already supports.

Acknowledgements

We would like to thank Monojit Choudhury and Sebastin Santy for their feedback during the model
evaluation process and Simran Khanuja for setting up the model training process.

References

Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann, and Matthew Mc-
Dermott. 2019. Publicly available clinical BERT embeddings. In Proceedings of the 2nd Clinical Natural
Language Processing Workshop, pages 72—78, Minneapolis, Minnesota, USA, June. Association for Computa-
tional Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk, and Veselin
Stoyanov. 2018. XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pages 2475-2485, Brussels, Belgium, October-
November. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzman,
Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual repre-
sentation learning at scale.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171-4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Spandana Gella, Kalika Bali, and Monojit Choudhury. 2014. “ye word kis lang ka hai bhai?” testing the limits of
word level language identification. In Proceedings of the 11th International Conference on Natural Language
Processing, pages 368-377, Goa, India, December. NLP Association of India.

Simran Khanuja, Sandipan Dandapat, Anirudh Srinivasan, Sunayana Sitaram, and Monojit Choudhury. 2020.
GLUECo0S: An evaluation benchmark for code-switched NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 3575-3585, Online, July. Association for Computational
Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2019.
Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics,
Sep.

Braja Gopal Patra, Dipankar Das, and Amitava Das. 2018. Sentiment analysis of code-mixed indian languages:
An overview of sail_code-mixed shared task @icon-2017.

955

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Bjorn Gambick, Tanmoy Chakraborty,
Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets. In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury, Sunayana Sitaram, Sandipan Dandapat, and Kalika Bali.
2018a. Language modeling for code-mixing: The role of linguistic theory based synthetic data. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1543—-1553, Melbourne, Australia, July. Association for Computational Linguistics.

Adithya Pratapa, Monojit Choudhury, and Sunayana Sitaram. 2018b. Word embeddings for code-mixed language
processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3067-3072, Brussels, Belgium, October-November. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982-3992, Hong
Kong, China, November. Association for Computational Linguistics.

Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali, and Chandra Shekhar Maddila. 2017. Estimat-
ing code-switching on twitter with a novel generalized word-level language detection technique. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1971-1982, Vancouver, Canada, July. Association for Computational Linguistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classification?

David Vilares, Miguel A. Alonso, and Carlos Gémez-Rodriguez. 2016. EN-ES-CS: An English-Spanish code-
switching twitter corpus for multilingual sentiment analysis. In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC’16), pages 4149-4153, PortoroZz, Slovenia, May. European
Language Resources Association (ELRA).

Bin Wang and C. C. Jay Kuo. 2020. Sbert-wk: A sentence embedding method by dissecting bert-based word
models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art
natural language processing.

956

	Introduction
	Dataset and Preprocessing
	System Description
	Multilingual Embeddings
	Sentence Embedding Technique
	Finetuning Multilingual Embeddings on Code-Mixed Data

	Results and Analysis
	Sentence Embedding Methods
	Finetuning on Code-Mixed Data
	Class-Wise Performance Analysis

	Conclusion

