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Abstract

This paper describes the winning system for SemEval-2020 task 7: Assessing Humor in Edited
News Headlines. Our strategy is Stacking at Scale (SaS) with heterogeneous pre-trained lan-
guage models (PLMs) such as BERT and GPT-2. SaS first performs fine-tuning on numbers of
PLMs with various hyperparameters and then applies a powerful stacking ensemble on top of the
fine-tuned PLMs. Our experimental results show that SaS outperforms a naive average ensemble,
leveraging weaker PLMs as well as high-performing PLMs. Interestingly, the results show that
SaS captured non-funny semantics. Consequently, the system was ranked 1st in all subtasks by
significant margins compared with other systems.

1 Introduction

The recognition of humor in text has been receiving much attention (Barbieri and Saggion, 2014; Hossain
et al., 2019). Accordingly, SemEval-2020 task 7, Assessing Humor in Edited News Headlines (Hossain
et al., 2020a), which aims at automatically recognizing humor in hand-edited news headlines, was held
with two subtasks: Subtask 1, which aims at predicting a funny score for an edited news headline, and
Subtask 2, which aims at predicting the funnier headline of two given edited headlines.

In this paper, we pursue humor recognition with a large-scale stacking ensemble (hereafter Stacking
at Scale or SaS), by leveraging pre-trained language models (PLMs). SaS is based on an ensemble
method where a meta-estimator is trained to predict labels from the outputs of base models, finding the
best combinations of the base models (Wolpert, 1992). Hence, there are two steps in SaS: (i) fine-tuning
numbers of heterogeneous PLMs, including BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019),
RoBERTa (Liu et al., 2019), Transformer-XL (Dai et al., 2019), XLNet (Yang et al., 2019), and XLM
(Lample and Conneau, 2019), with various hyperparameters, obtaining rich and diverse models, and (ii)
training a meta-estimator on top of these PLMs.

Our experiments, fusing up to 1750 PLMs in total, indicate that SaS successfully leverages weaker
PLMs as well as high-performing PLMs. Consequently, our system is ranked 1st on both subtasks
with significant margins to others. Interestingly, analyses show that SaS learned (relatively) non-funny
semantics while still struggling to understand the funniest semantics. To the best of our knowledge, this
is the first experiment that involves thousands of diverse of PLMs, revealing the current strengths and
limitations of PLMs in automatic humor recognition. We also provide useful insights obtained from rich
analyses.

2 Background

Work related to humor recognition has been done in recent years (Khodak et al., 2018; Barbieri and
Saggion, 2014; Reyes et al., 2012). Khodak et al. (2018) introduced a large-scale annotated corpus
of sarcasm and provided baseline systems for sarcasm detection. Barbieri and Saggion (2014) widely
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investigated features for automatically detecting irony and humor. SemEval-2020 task 7 (Hossain et
al., 2020a) aims at automatically detecting humor in hand-edited news headlines and was introduced by
(Hossain et al., 2019). We worked to solve the problem by utilizing a number of PLMs with stacking.

3 Task Formalization

As we described in the above, Subtask 1 aims at predicting a “funny score”, a real-value in the range of
[0, 3] (0 = “Not”, 1 = “Slightly”, 2 = “Moderately”, 3 = “Funny”) for an edited headline. We formalized
the task as a sentence-pair regression. Subtask 2 aims at predicting the funnier headline of two edited
headlines originating from the same headline. We take an approach to utilizing the model of Subtask 1,
that is, estimating the scores of the edited headlines and choosing the one having the higher score.

4 Fine-Tuning Pre-Trained Language Model (PLM) on Sentence-Pair Regression

PLM specific pooling

[CLS]  President Vows   to     Cut   <   Hair   > . [SEP]  President Vows to  Cut  Taxes  .

edited headline original headline

Concat and FFN

funny score

PLM specific pooling

PLM

Dot product attention

Figure 1: Overview of proposed model

Figure 1 shows an overview of our proposed
model architecture. Given a pair of edited and
original headlines, we apply PLM, BiLSTM
layers, a dot-product attention layer, a pooling
layer, and a feed-forward layer successively to
predict funny scores.
Preprocessing: We concatenate two headlines.
Tokenization is conducted by a PLM-specific
tokenizer. We surround the edited tokens with
two special marking tokens, “<” and “>.” We insert special tokens (e.g., [CLS] and [SEP]) if necessary
as required for each PLM. The implementations are described in detail in Section 6.1.

4.1 Intra- and Inter-Headline Encoding
To recognize inner-headline semantics, we first apply headline-wise multi-layered BiLSTM (Graves et
al., 2013) as follows:

h
(BiLSTM)
i =

 BILSTM
(
h
(PLM)
start_edit, . . . ,h

(PLM)
end_edit

)
i
, if start_edit ≤ i ≤ end_edit

BILSTM
(
h
(PLM)
start_origin, . . . ,h

(PLM)
end_origin

)
i
, if start_origin ≤ i ≤ end_origin

where h
(PLM)
i /h(BiLSTM)

i are the PLM/BiLSTM representation of the i-th token and
(start_edit, end_edit)/(start_origin, end_origin) represent the starting/ending positions of the
edited/original headlines.

Next, h(BiLSTM)
i are fed into the global dot-product-attention to capture inter-headline semantics, pro-

ducing final hidden embeddings hi.

4.2 Funny Score Regression
We employ a headline-wise pooling layer and predict the funny score with a feed-forward network (FFN):

ŷ = v>FFN
(
POOLINGPLM (hstart_edit:end_edit)⊕ POOLINGPLM

(
hstart_origin:end_origin

))
,

where⊕ is a concatenation operation. POOLINGPLM is a PLM-specific embedding pooling function. For
example, for BERT, it takes the embeddings of the first tokens of two headlines (“[CLS]” and “[SEP]”).
The details are in Table 7 of Appendix B. We trained the model with mean squared error loss.

5 Stacking at Scale

We further propose large-scaled ensemble, called Stacking at Scale (SaS), based on a two-layer stacking
ensemble (Wolpert, 1992), where the first-layer models (i.e., base models) are fine-tuned PLMs with
different hyperparameter sets, and the second-layer model (i.e., meta-estimator) is another regression
model. This may select the best combinations of the base models to produce more robust predictions.

Figure 2 shows a schematic view and the algorithm steps of SaS. The key attributes are (i) using
heterogeneous PLMs for base models, (ii) generating diverse hyperparameter sets for the base models,
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Figure 2: Simplified example of Stacking at Scale with 3-fold cross-validation

and (iii) performing cross-validation (CV) during the whole process. CV is used for accumulating label
leakage-free prediction data over the whole training dataset used for the meta-estimator training as well
as measuring the accurate performances of models to select better base models. Since SaS requires
enormous computations, discussions on complexity are given in Appendix A.

5.1 Base Model Hyperparameter Generation

We pursue diversity for the base models by generating numbers of various hyperparameter sets. To gener-
ate sets with reasonable performances in a relatively small number of trials, we utilize a hyperparameter
optimization framework. It seeks the best hyperparameter set by performing an iterative search, (i) sug-
gesting (possibly better) sets given the sets already found and their performances and (ii) measuring the
performances of the newly suggested sets (see Train Base Models in Figure 2). The performance for
each set is measured on the basis of mean squared errors (MSEs) averaged over k validation folds of CV.

Since our purpose here is not only to find the best hyperparameter sets but to collect diverse sets with
reasonable performances, we keep all the sets suggested during the search. After the search, we select
the top performing n sets from each PLM type (see Select Base Models in Figure 2).

5.2 Meta-Estimator Training and Inference

Since the non-linearity laid on the dataset could have already been captured by PLMs, we use simple
linear regression models for the meta-estimator. Suppose that the scores for a headline predicted by N
base models are ŷ1, ..., ŷN . The meta-estimator learns the weights wi in the linear regression problem

ŷmeta = w0 + w1ŷ1 + ...+ wN ŷN (1)

by using MSE loss with some regularization term. The input dimensionality N is (# of PLM types ×
n) because we pick the top n hyperparameter sets for each PLM type. For example, for
Train Meta Estimator in Figure 2, |M| = |S| = (# of PLM types× n).

Overall, to predict funny scores with SaS, we (i) feed a headline pair into (# of PLM types × n × k)
base models, obtaining (# of PLM types×n×k) predictions in total, (ii) take the CV-wise average of the
predictions, reducing the dimension to (# of PLM types× n), and (iii) feed the CV-averaged predictions
into the meta-estimator to get the final prediction (see Apply Meta Estimator in Figure 2).
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6 Experiments

6.1 Settings
Offline Performance Measurements: Throughout our experiments, we estimated the performances of
the models using the root mean squared error (RMSE) aggregated over the validation data of k=5 fold
cross-validation1 (hereafter RMSE-CV). Note that the aggregation is done over k=5 different sets of
validation data, so we can measure the performances robustly.
Base Models: Table 1 shows the seven employed PLMs. We employed Optuna (Akiba et al., 2019)
as the hyperparameter optimization framework. We generated 50 hyperparameter sets for each PLM.
Therefore, in total, 350 models (= 7 types of PLMs × 50 sets of hyperparameters) or 1750 models in-
cluding the CV variants (×5 CV-folds) were built for the experiments. Details of on the hyperparameters
are given in Appendix B. We tried many choices of n ranging from 1 to 50 to minimize the RMSE-CV.
Meta-Estimators: Two types of meta-estimators were employed: (i) Lasso regression (Tibshirani,
1996), i.e., linear regression with L1 regularization β|w|, and (ii) Ridge regression (Hoerl and Ken-
nard, 1970), i.e., linear regression with L2 regularization β||w||2. The strength parameter β was chosen
from the default search values of scikit-learn (Pedregosa et al., 2011) to minimize the RMSE-CV.
Data: We used Humicroedit (Hossain et al., 2019) and FunLines (Hossain et al., 2020b), which are
distributed officially. They have the same data format; however, they have slightly different label distri-
butions (Hossain et al., 2020b). The official splits (i.e., train and dev) of Humicroedit are all concatenated
to a single dataset, on which the cross-validation folds are built.

For training folds, we used both relevant datasets, Humicroedit (Hossain et al., 2019) and FunLines
(Hossain et al., 2020b), to maximally capture funny semantics. However, for validation folds, we used
only Humicroedit because the test data instances were taken only from Humicroedit and we wanted to
measure the approximate model performances on the test set.
Implementation: We implemented the base models with jiant (Pruksachatkun et al., 2020), a transfer
learning framework, which in turn utilizes Hugging Face’s Transformers library (Wolf et al., 2019) for
their implementation of PLMs, PLM-specific tokens (e.g., “[CLS]” and “[SEP]” for BERT), and a PLM-
specific tokenizer. We implemented the meta-estimators using scikit-learn (Pedregosa et al., 2011). We
employed the RidgeCV and LassoCV functions for Ridge/Lasso regressions. Both functions automati-
cally find the best regularization strengths β.
Computational Resource: We employed up to 800 Volta (16-GB) GPUs offered by ABCI2.

6.2 Results and Discussions
Official Ranking: We submitted the SaS-Ridge (n=20) system, i.e., SaS with the Ridge estimator using
n=20 hyperparameter sets per PLM type, which performed the best in our pre-submission experiments.
The model utilized 700 base models (=7 types of PLMs×20 sets of hyperparameters×5 CV-folds). The
official ranking presented in Table 2 shows that our system is ranked 1st on both subtasks by significant
margins to others. Hereafter, we analyze our system using Subtask 1 since we tuned our systems on it.
How Powerful is SaS?: We show ablation results for each PLM for n = 1 systems in Table 3. Most
of the stacking models (shown as “SaS”) performed better than single models (“single”), showing the
effectiveness of fusing heterogeneous PLMs. Removing a PLM from SaS almost always degrades the
performance regardless of the native performance of the removed model. This implies that not only the
strongest PLMs but also the weaker PLMs are important for SaS. Hereafter, we use the single RoBERTa
model as our baseline, which is the strongest model among the single models. Note that this baseline is
competitive since it is with the best hyperparameter found in the 50-step hyperparameter optimization.

Figure 3 shows the change in performance for the total number of base models without CV variants
(i.e., 7 types of PLMs×n). SaS-Ridge achieved its best performance around 100 models, and SaS-Lasso

1Let MSEi be the MSE and ni the number of instances for the ith-fold validation data. The aggregated RMSE is as follows.

RMSE-CV =

√√√√ 1∑k
i=1 ni

k∑
i=1

ni × MSEi

2AI Bridging Cloud Infrastructure provided by National Institute of Advanced Industrial Science and Technology (AIST).
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PLM model
BERT (Devlin et al., 2019) large-uncased
GPT-2 (Radford et al., 2019) medium / large
RoBERTa (Liu et al., 2019) large
Transformer-XL (Dai et al., 2019) wt103
XLNet (Yang et al., 2019) large-cased
XLM (Lample and Conneau, 2019) en-2048

Table 1: Seven PLMs employed in SaS.
“model” represents specific pre-trained
model variants of HuggingFace’s Trans-
formers library (Wolf et al., 2019)

.

Subtask 1 Subtask 2
team RMSE team accuracy
Hitachi (ours) 0.49725 Hitachi (ours) 0.67428
Amobee 0.50726 Amobee 0.66058
YNU-HPCC 0.51737 YNU-HPCC 0.65906
MLEngineer 0.51966 lmml 0.64688
lmml 0.52027 PALI 0.64460

Table 2: Official results for top five teams.
Performances on official test data are
shown.

model RMSE-CV
SaS-Ridge (n=1) 0.4998
average ensemble 0.5071
SaS-Ridge (n=1) w/o BERT 0.5004
SaS-Ridge (n=1) w/o GPT-2 (M) 0.5003
SaS-Ridge (n=1) w/o GPT-2 (L) 0.5014
SaS-Ridge (n=1) w/o RoBERTa 0.5052
SaS-Ridge (n=1) w/o Transformer-XL 0.4998
SaS-Ridge (n=1) w/o XLNet 0.4999
SaS-Ridge (n=1) w/o XLM 0.5001
single BERT 0.5237
single GPT-2 (M) 0.5217
single GPT-2 (L) 0.5168
single RoBERTa 0.5109
single Transformer-XL 0.5565
single XLNet 0.5536
single XLM 0.5349

Table 3: Performance comparison of var-
ious models. RMSE aggregated over
k=5 CV’s validation data (RMSE-CV) is
shown. Top: Ensemble models (SaS and
average ensemble) over n = 1 base mod-
els from each PLM type. Middle: SaS
models without a specific PLM. Bottom:
single base models.
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Figure 3: Change in performance for number of base
models without CV variants. RMSE aggregated over k=5
CV’s validation data (RMSE-CV) is shown. For compari-
son, average ensemble model and single RoBERTa model
are also shown.
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shown are averages over CV variant models.
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Figure 5: PLM-wise sum of absolute weights
(
∑

i∈PLM |wi|) of best SaS models, i.e., SaS-Lasso
(n=50) and SaS-Ridge (n=20). Models were trained on
our k=5 CV’s training data. Values shown are averages
over CV variant models.

kept its performance high over the stacking of 100 models, while the naive average ensemble got worse.
This implies that at least nearly or over 100 PLMs are required to achieve the best performance for SaS.
Also, SaS successfully utilized weaker models without harming the performance, while the naive average
ensemble failed in that. To validate this, we plotted the numbers of active weights (i.e., the number of
wi(i ≥ 1) in eq. (1) that meet the condition |wi| ≥ threshold(0.01)) in Figure 4. Since Lasso is a sparse
linear model, it constantly activated 80 to 100 PLMs, while Ridge’s active weights increased linearly.
The result indicates that utilizing the sparse model can automatically adjust the number of PLMs to be
used.

Which Type of PLM is Useful?: We obtained contribution scores for each PLM type via the meta-
estimator’s weights. Figure 5 shows the PLM-wise sums of absolute weights;

∑
i∈PLM |wi|, where
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headline gold SaS RoBERTa reduction

U.S. ambassador to U.N. says Russia tearing down global order delivery 0.00 0.63 1.11 0.48
North Carolina Governor Says He ’ll Issue Executive Order For Full LGBTQ Rights alphabet 1.40 1.12 0.62 0.50
Hillary Clinton : Democrats Who Are Pro-Life Must Vote strip to Promote Abortion 1.60 1.38 0.46 0.92
‘I certainly meant no disrespect respect’ : Kellyanne Conway addresses her pose in the Oval
Office photo

2.40 0.77 0.74 0.03

Rocks falling into oceans , not climate change , causing sea levels to rise according to one
congressman toddler.

2.60 0.85 0.82 0.03

Trump ’s ‘ strategy ’ on Afghanistan Presidency : Let the next president figure it out 2.60 0.80 0.99 -0.19
Hillary Clinton Supporters Filed a Complaint Against Bernie Sanders themselves - And Lost 3.00 0.76 0.91 -0.15

Table 4: Some sample headlines on which our best system, SaS-Lasso (n=50), reduced absolute errors by
large margins (top) and by small (or sometimes negative) margins (bottom). Besides headlines, we show
gold funny score (“gold”), prediction made by our system (“SaS”), with single RoBERTa (“RoBERTa”),
and error reduction over baseline RoBERTa (“reduction”).

wi are the weights in eq. (1). RoBERTa and GPT-2 seemed to be the most preferable models, con-
sistent with the results of excluding the models shown in Table 3 (shown as w/o). However, the plot
also indicates that the stacking succeeded in leveraging weaker models as well as the best models.
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Figure 6: Top: Gold funny-score dis-
tribution. Bottom: Mean absolute error
and mean absolute error reduction of our
best model, SaS-Lasso (n=50), over single
RoBERTa. Bin width was 0.2.

What Did SaS Solve?: Figure 6 shows a sample distribu-
tion over the gold funny scores (top) and the mean abso-
lute error (i.e., eSaS = |ŷmeta − ygold|) and the mean abso-
lute error reductions (i.e., eRoBERTa − eSaS) over the single
RoBERTa baseline (bottom). SaS improved performance
for not- to slightly-funny ([0-1.5]) headlines, while having
similar or degraded performance for the funnier ([1.5-3.0])
headlines. In short, SaS learned (relatively) non-funny se-
mantics. Since these headlines are the majority, SaS also
gained overall performance improvements.
Case Study: Why Did SaS Learn Non-Funny Semantics?
Table 4 shows sample headlines. The top rows show samples
on which our best system, SaS-Lasso (n=50), reduced the
errors over the single RoBERTa baseline by large margins.
These headlines had small funny scores, and it seems that we
can understand the non-funniness from the headline text itself without needing much external knowledge,
and, in particular, some of the funniness comes only from the bizarreness or incongruity of the edited
headlines. It is natural for PLMs to detect these types of non-funniness because they are trained on large
amounts of corpora and could have learned to detect the unnaturalness of the given texts. We estimate
that SaS enhanced this ability by combining the heterogeneous PLMs.

The bottom rows show headlines with small (or sometimes negative) error reductions. These headlines
had large funny scores and seemed to be expressing irony. Irony does not express intentions directly in
text and rather relies on a reader’s inference using sufficient common sense or background knowledge,
especially on current topics. Given that SaS could have chosen the best combination of PLMs and that
even SaS had no performance gain for such headlines, it is likely that such knowledge is not contained
in any of the PLMs. This suggests the current limitation of PLMs on the humor recognition tasks.

7 Conclusion
In this paper, we proposed a top performing model for the task of humor recognition. We fused thousands
of pre-trained language models by Stacking at Scale. Experimental results showed the incredible perfor-
mance of the Stacking at Scale, and at the same time, also revealed the current limitation of pre-trained
language models. For future work, we will explore injecting common sense or background knowledge
into models to understand humor better.
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A Time Complexity of Stacking at Scale

In this section, we discuss the time complexity of the Stacking at Scale (SaS) algorithm. We (i) first
induce the theoretical time complexity of SaS and (ii) show measurements of the actual running time
observed in our experiments, which is in accordance with those predicted by the theory.

The discussions are not that rigorous or exhaustive; however, we believe they are enough to offer
readers rough estimations of the time complexity of SaS.

A.1 Theoretical Expressions

We estimate the time complexity of SaS, expressed by that of a single base-model system. The training
phase complexity [eq. (2)] and the inference phase complexity [eq. (3)] are induced. In both cases, the
dominant term comes from the base-model hyperparameter generation or inference. Thus, the SaS time
complexity is (# of base models engaged in a phase) times larger than that of a single base-model system.

We first decompose the SaS algorithm into several steps and induce the time complexity of each step
independently. Then, we aggregate the complexities to calculate the overall complexity of SaS.

A.1.1 Base-Model Hyperparameter Generation

Let τ base
train (Dtrain) be the time needed to train a single base model on the training data Dtrain with a specific

setup (say, a specific PLM type, number of epochs, specific machine resource used, etc.). Let Ntrain be
the number of base models (i.e., the number of unique hyperparameter sets) to be trained. The time
complexity of base-model hyperparameter generation T base

train (Dtrain) is estimated as follows.

T base
train (Dtrain) = Ntrain × τ base

train (Dtrain)

Referring to Figure 2, Ntrain is expressed as:

Ntrain = P ×B × k,
where P is the number of PLM types, B the hyperparameter-optimization step budget per PLM type,
and k the number of cross-validation folds.

A.1.2 Base Model Inference

Let τ base
infer(Dtest) be the time needed to execute inference with a single base model over the test data Dtest

with a specific setup. The time complexity of base model inference T base
infer(Dtest) is estimated as follows.

T base
infer(Dtest) = Ninfer × τ base

infer(Dtest)

Let n(≤ B) the number of models per PLM type that are engaged in SaS. Then, Ninfer is expressed as
follows.

Ninfer = P × n× k

A.1.3 Meta-Estimator Training

Since the inputs of the meta-estimators are the predictions over the training data Dtrain made by the
base models, we must execute the inference of the base model over the training data Dtrain beforehand.
Therefore, the time complexity of meta-estimator training Tmeta

train is expressed as:

Tmeta
train (Dtrain) = T base

infer(Dtrain) + τmeta
train (Dtrain),

where τmeta
train (Dtrain) is the time needed to train a meta-estimator with a specific setup.

A.1.4 Meta-Estimator Inference

The time complexity of meta-estimator inference Tmeta
infer is expressed as:

Tmeta
infer (Dtest) = T base

infer(Dtest) + τmeta
infer (Dtest),

where τmeta
infer (Dinfer) is the time needed to execute the inference of the meta-estimator for a specific setup.
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A.1.5 Overall SaS Training
Overall, the time complexity of SaS training T SaS

train(Dtrain) is as follows.

T SaS
train(Dtrain) = T base

train (Dtrain) + Tmeta
train (Dtrain)

= PBk × τ base
train (Dtrain) + Pnk × τ base

infer(Dtrain) + τmeta
train (Dtrain)

= PBk × τ base
train (Dtrain)×

[
1 +

n

B

τ base
infer(Dtrain)

τ base
train (Dtrain)

+
1

Ntrain

τmeta
train (Dtrain)

τ base
train (Dtrain)

]
In many cases, the second term in the brackets is negligible given that n

B ≤ 1 and that
τ base

infer(Dtrain)/τ
base
train (Dtrain) � 1 often holds since, (i) in the training phase, we iterate over the dataset

for several times, while, in the inference phase, we iterate only once, and, (ii) in the training phase, we
need to back-propagate the gradients, while, in the inference, we do not. The third term can be negli-
gible in the case where there are numbers of base models to train (Ntrain � 1) or the meta-estimator is
“lighter” than the base models (τmeta

train (Dtrain)/τ
base
train (Dtrain) � 1; this indeed holds for our experiments

since the base models are large neural networks, while the meta-estimators are just linear regressions.
Thus, T SaS

train(Dtrain) can be approximated only by the first term (i.e., base model training) as follows.

T SaS
train(Dtrain) ∼ PBk × τ base

train (Dtrain) (2)

Thus, the overall training complexity of SaS is PBk times larger than that of a base model.

A.1.6 Overall SaS Inference
The time complexity of SaS inference T SaS

infer(Dtest) is the same as that of the meta-estimator’s inference
Tmeta

infer (Dtest).

T SaS
infer(Dtest) = T base

infer(Dinfer) + τmeta
infer (Dinfer)

= Pnk × τ base
infer(Dtest) + τmeta

infer (Dinfer)

= Pnk × τ base
infer(Dtest)×

[
1 +

1

Ninfer

τmeta
infer (Dtest)

τ base
infer(Dtest)

]
Again, the second term can be negligible in the case where there are numbers of base models engaged in
SaS (Ninfer � 1) or the meta-estimator is lighter than the base models (τmeta

train (Dtest)/τ
base
train (Dtest) � 1).

Thus, T SaS
infer(Dtest) can be approximated only by the first term (i.e., base model inference) as follows.

T SaS
infer(Dtest) ∼ Pnk × τ base

infer(Dtest) (3)

Thus, the overall inference complexity of SaS is Pnk times larger than that of a base model.

A.2 Measurements of Running Times

In this section, we show the observed running times of the SaS algorithm. Please note that the results are
not rigorous or exhaustive. The purpose here is rather to offer readers a taste of the order estimations of
the computational time and resources needed to reproduce the SaS experiments.

A.2.1 Measurement of τ
We reposit the setting of the experiments in Table 5. For computational resources, we trained our base
models using Volta (16-GB) GPUs (single model per single GPU). Some large models [i.e., GPT-2 (L)
and XLM] were trained on Volta (32-GB) GPUs.

On average, the training time seemed to be about 30 minutes, that is:

τ base
train (Dtrain) ∼ 0.5 hours,

Note that this estimation is really rough since τ base
train (Dtrain) depends on many factors including the PLM

type, number of training epochs (mostly 8 or 16), batch size (1 to 16), and that the above value is only
the average (or “marginal”) actual running times.

With the same setting as the training, the inference time was observed to be:

τ base
infer(Dtest) ∼ 20 secs,

which is much smaller than th training time, as expected.
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parameter value
P 7 Seven types of PLM are used. (see Table 1)
B 50 50 hyperparameter sets per PLM types are generated.
k 5 5-fold cross-validation is employed.
n 50 Our best system, Lasso(n = 50) uses 50 base models per PLM type.
Dtrain Humicroedit + FunLines The concatenation is used. About 17k instances.
Dtest Official test data About 3k instances.

Table 5: Setup of our experiments

A.2.2 Measurement of T
In our setting, the number of models trained (Ntrain) was as follows.

Ntrain = P ×B × k = 7× 50× 5 = 1750

Thus, the total training time could be estimated theoretically as follows.

T base
train (Dtrain) = Ntrain × τ base

train (Dtrain) ∼ 1750× 0.5 hours = 875 hours

As we observed, with 200 Volta GPUs, it took ∼ 5 hours to train the whole SaS model, which is of the
same order as the theoretically predicted training time.

The number of models engaged in the ensemble (Ninfer) was estimated as follows.

Ninfer = P × n× k = 7× 50× 5 = 1750

We have not measured the total inference time since the inference was executed at the same time as the
training with our implementation. Therefore, we show only the theoretically expected inference time.

T base
train (Dtrain) = Ntrain × τ base

train (Dtrain) ∼ 1750× 20 secs ∼ 10 hours
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B Base-Model Hyperparameter Generation

In this section, we describe the setup in detail and the results of the base-model hyperparameter genera-
tion.

B.1 Setup
We generated hyperparameter sets using Optuna (Akiba et al., 2019), a hyperparameter optimization
framework. We used version 1.10. We started each optimization process using Optuna’s default seed.
For each PLM type, we generated 50 hyperparameter sets. At each step of the optimization process, we
tried 5 hyperparameter sets in parallel. Therefore, in total, 10 steps were needed to try 50 hyperparameter
sets.

Table 6 and Table 7 show the specific hyperparameter setups. Table 6 shows the hyperparameters and
their (i) search range, (ii) the initial values, and (iii) the Optuna sampling functions used. Table 7 shows
other PLM-specific, fixed hyperparameters.

name explanation search range initial value sampling function
learning rate The global learning rate. [1e-6, 3e-4] 3e-5 log-uniform

optimizer The optimizer. "bert_adam" is the opti-
mizer (adam with warmup) used in (De-
vlin et al., 2019)

"adam" or
"bert_adam" "adam" categorical

gradient clipping The value of gradient L2-norm clipping - 5.0 (fixed) -
max epochs The max trainin epochs. 4, 8 or 16 8 categorical
early stopping patience The patience of early stopping. The vali-

dation check is done with the intervals of
200 gradient steps.

- 5 (fixed) -

BiLSTM layers The number of the BiLSTM layers men-
tioned in section 4.1

1 or 2 2 categorical

BiLSTM
hidden dim The number of the hidden units of the

BiLSTM layers.
256, 512 or 1024 512 categorical

attention
hidden dim The number of the hidden units of the

dot-product-attention mentioned in sec-
tion 4.2

256, 512 or 1024 512 categorical

BiLSTM and attention
dropout The dropout ratio of the BiLSTM layers

and dot-product-attention.
[0.00, 0.30] 0.15 uniform

FFN hidden dim The number of hidden units of the feed-
forward layer mentiond in section 4.2.

256, 512 or 1024 512 categorical

FFN dropout The dropout ratio of the feed-fowrard
layer.

[0.00, 0.30] 0.20 uniform

CV fold (k) The number of folds in the cross-
validation.

- 5 (fixed) -

activation
function The activation functions. - tanh (FFN)

sigmoid (BiLSTM) -

Table 6: Setup of each hyperparameter. Search range, initial value, and Optuna sampling function used
are shown. Note that some hyperparameters are not searched for but fixed.

PLM type batch size pooling
BERT (Devlin et al., 2019) large-uncased 1 first token
GPT-2 (Radford et al., 2019) medium / large 16 / 2 last token
RoBERTa (Liu et al., 2019) large 16 average
Transformer-XL (Dai et al., 2019) wt103 4 average
XLNet (Yang et al., 2019) large-cased 16 last token
XLM (Lample and Conneau, 2019) en-2048 1 average

Table 7: PLM-specific fixed hyperparameters. Batch size and embedding pooling function mentioned in
Section 4.2 are shown. “First token” takes first token embedding from headline, “last token” takes last
token embedding, and “average” takes average of all token embeddings in headline.
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B.2 Results - The Best Values -
For the readers’ convenience, we show the best hyperparameters found in our search in Table 8. Note
that readers can reproduce these results by executing the hyperparameter search with the experimental
setup described in the previous section.

BERT GPT-2 (L) GPT-2 (M) RoBERTa Transformer-XL XLNet XLM
learning rate 9.06e-06 3.00e-05 4.50e-05 1.51e-05 4.38e-05 4.01e-06 7.02e-06
optimizer adam bert_adam adam bert_adam adam adam adam
max epochs 8 8 16 16 8 16 8
BiLSTM layers 2 2 1 2 2 2 2
BiLSTM hidden dim 1024 512 512 256 1024 1024 512
attention hidden dim 1024 512 256 512 512 256 256
BiLSTM and attention dropout 1.59e-02 3.53e-02 7.99e-02 1.82e-01 1.16e-01 2.70e-01 1.52e-01
FFN hidden dim 512 256 1024 512 512 1024 512
FFN dropout 7.01e-02 1.56e-01 7.74e-02 7.49e-02 1.68e-01 2.82e-02 8.87e-02

Table 8: Best hyperparameters found in hyperparameter search. Performance was measured by RMSE-
CV.


